Answer
Verified
417k+ views
Hint:Angular momentum of an electron was given by Bohr. This is the result of applying quantum theory to the orbit of the electron. The solution of the Schrodinger equation yields the angular momentum quantum number.
Complete step-by-step answer:According to Bohr’s atomic model, the angular momentum of electron orbiting around the nucleus is quantized, which is given by
$mvr=\frac{nh}{2\pi }$
Where, m = mass of the electron
n = integer 1,2,3,4…
v = velocity
h = Planck’s constant
r = radius
He also added that electrons move only in those orbits where angular momentum of an electron is an integral multiple of h/2.
His postulates regarding the quantization of angular momentum of an electron was later explained by DE Broglie.
Now, orbital angular momentum is the component of angular momentum. It is the value of angular momentum of the electron revolving around the orbit and the fact that the electron is spinning around its own axis is neglected i.e., the spin is constant.
Orbital angular momentum is $L=\sqrt{l(l+1)h}$
Here, l is the azimuthal quantum number.
The azimuthal quantum number (l) is the quantum number associated with the angular momentum of an atomic electron. It is also known as the angular momentum quantum number or the second quantum or the second quantum number.
Note:The first equation gives the angular momentum of an electron revolving in a circular orbit, for example an electron is present in the fifth orbit. However, orbital angular momentum of electrons in a given orbital, for example an electron is present in d orbital.
Complete step-by-step answer:According to Bohr’s atomic model, the angular momentum of electron orbiting around the nucleus is quantized, which is given by
$mvr=\frac{nh}{2\pi }$
Where, m = mass of the electron
n = integer 1,2,3,4…
v = velocity
h = Planck’s constant
r = radius
He also added that electrons move only in those orbits where angular momentum of an electron is an integral multiple of h/2.
His postulates regarding the quantization of angular momentum of an electron was later explained by DE Broglie.
Now, orbital angular momentum is the component of angular momentum. It is the value of angular momentum of the electron revolving around the orbit and the fact that the electron is spinning around its own axis is neglected i.e., the spin is constant.
Orbital angular momentum is $L=\sqrt{l(l+1)h}$
Here, l is the azimuthal quantum number.
The azimuthal quantum number (l) is the quantum number associated with the angular momentum of an atomic electron. It is also known as the angular momentum quantum number or the second quantum or the second quantum number.
Note:The first equation gives the angular momentum of an electron revolving in a circular orbit, for example an electron is present in the fifth orbit. However, orbital angular momentum of electrons in a given orbital, for example an electron is present in d orbital.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE