Answer
Verified
465.6k+ views
- Hint: Here we will proceed by using the approach of Kepler’s third law of planet motion It will help us to find out the period of a revolution of a communication satellite C.
Complete step-by-step solution -
Here it is given that radius of the earth satellite is 4 times of a ‘communication satellite’
Larger the distance of a planet from the sun, larger will be its period of revolution around the sun.
As per Kepler’s third law, the square of the period of any planet is proportional to the cube of the semi-major axis of the orbit. The phenomena capture the relationship between the distance between the distance of planets from the sun, and the total orbital periods.
Thus,
$\therefore {T^2}\alpha {R^3}$
${\left( {\dfrac{{Ts}}{{Tc}}} \right)^2} = {\left( {\dfrac{{Rs}}{{Rc}}} \right)^3}$
$\dfrac{{Ts}}{{Tc}} = {\left( {\dfrac{{Rs}}{{Rc}}} \right)^{3 \div 2}}$
It is given that $Rs = 4Rc$ ( because radius of satellite is four times that of C )
$\dfrac{{Ts}}{{Tc}} = {\left( {\dfrac{{4Rc}}{{Rc}}} \right)^{3 \div 2}}$
Rc and Rc will be cancelled, Then
$
\dfrac{{Ts}}{{Tc}} = {\left( {4 \times 4 \times 4} \right)^{½}} \\
\dfrac{{Ts}}{{Tc}} = \sqrt {64} \\
\dfrac{{Ts}}{{Tc}} = 8 \\
Ts = 8Tc \\
$
Time period of a communication satellite is one day
$Ts = 8days$
Note: Whenever we come up with this type of question, one must know that a satellite in a circular orbit around a celestial body moves at a velocity where the gravitational force of this body equals the centripetal force necessary to maintain the constant circular orbit.
Complete step-by-step solution -
Here it is given that radius of the earth satellite is 4 times of a ‘communication satellite’
Larger the distance of a planet from the sun, larger will be its period of revolution around the sun.
As per Kepler’s third law, the square of the period of any planet is proportional to the cube of the semi-major axis of the orbit. The phenomena capture the relationship between the distance between the distance of planets from the sun, and the total orbital periods.
Thus,
$\therefore {T^2}\alpha {R^3}$
${\left( {\dfrac{{Ts}}{{Tc}}} \right)^2} = {\left( {\dfrac{{Rs}}{{Rc}}} \right)^3}$
$\dfrac{{Ts}}{{Tc}} = {\left( {\dfrac{{Rs}}{{Rc}}} \right)^{3 \div 2}}$
It is given that $Rs = 4Rc$ ( because radius of satellite is four times that of C )
$\dfrac{{Ts}}{{Tc}} = {\left( {\dfrac{{4Rc}}{{Rc}}} \right)^{3 \div 2}}$
Rc and Rc will be cancelled, Then
$
\dfrac{{Ts}}{{Tc}} = {\left( {4 \times 4 \times 4} \right)^{½}} \\
\dfrac{{Ts}}{{Tc}} = \sqrt {64} \\
\dfrac{{Ts}}{{Tc}} = 8 \\
Ts = 8Tc \\
$
Time period of a communication satellite is one day
$Ts = 8days$
Note: Whenever we come up with this type of question, one must know that a satellite in a circular orbit around a celestial body moves at a velocity where the gravitational force of this body equals the centripetal force necessary to maintain the constant circular orbit.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE