What is the order of density of neutrons?
A) $\text{1}{{\text{0}}^{3}}\text{ kg/cc}$
B) $\text{1}{{\text{0}}^{6}}\text{ kg/cc}$
C) $\text{1}{{\text{0}}^{\text{12}}}\text{ kg/cc}$
D) $\text{1}{{\text{0}}^{\text{2}}}\text{ kg/cc}$
Answer
Verified
462k+ views
Hint: The atomic nucleus is made of proton and neutron. Neutrons are the subatomic particles that are held together by nucleus forces in the nucleus. Neutron is considered as the perfectly spherical sum of atomic particles. We are interested in determining the neutron density. Density is defined as the ratio of mass to volume. It is written as,
$\text{ Density(d) = }\dfrac{\text{mass(m)}}{\text{Volume(V)}}\text{ }$
Individual or isolated neutron has a mass equal to $\text{ 9}\text{.39}\times \text{1}{{\text{0}}^{\text{8}}}\text{ eV/}{{\text{c}}^{\text{2}}}\text{ }$ or $\text{ 1}\text{.67 }\times \text{1}{{\text{0}}^{-27}}\text{ kg }$ and the mean radius of the neutron is $\text{ 1}\times \text{1}{{\text{0}}^{-13\text{ }}}cm\text{ }$ or $\text{ 1}\times \text{1}{{\text{0}}^{-15\text{ }}}m\text{ }$.
Complete Solution :
Neutrons are considered as perfectly sphere-shaped sub-particles. The volume of the sphere is given as follows,
$\text{ Volume of sphere = }\dfrac{4}{3}\text{ }\times \text{ }\pi {{\text{r}}^{\text{3}}}\text{ }$
Where r is the radius of the sphere.
- We are interested in determining the volume of the neutron. We know that the radius on neutron is $\text{ 1}\times \text{1}{{\text{0}}^{-13\text{ }}}cm\text{ }$. Let’s substitute the values of the radius in the volume relation to determine the volume of neutrons. It is calculated as follows,
$\begin{align}
& \text{ Volume of neutron = }\dfrac{4}{3}\text{ }\times \text{ }\pi \times {{\left( 1.0\times {{10}^{-13}} \right)}^{\text{3}}}\text{ } \\
& \Rightarrow \text{Volume of neutron = }\dfrac{4}{3}\text{ }\times \text{ }\pi \times {{10}^{-39}}\text{ } \\
\end{align}$
- We want to determine the density of neutrons in the nucleus. Density is defined as the ratio of mass to volume. In other words, it is the amount of mass occupied by the matter in the given space. Mathematically density is written as follows,
$\text{ Density(d) = }\dfrac{\text{mass(m)}}{\text{Volume(V)}}\text{ }$
We know that mass of a neutron is $\text{ m = 1}\text{.6}\times \text{1}{{\text{0}}^{-27}}\text{ kg }$
Let's substitute the values of mass and volume in the density relation. the density of neutron can be calculated as:
$\text{ Density of neutron = }\dfrac{\text{mass}}{\text{Volume}}\text{ =}\dfrac{\text{1}\text{.6}\times \text{1}{{\text{0}}^{-27}}\text{ kg }}{\dfrac{4}{3}\text{ }\times \text{ }\pi \times {{10}^{-39}}\text{ }}\text{ }$
- On further simplification we have
$\text{ Density of neutron =}\dfrac{\text{1}\text{.6}\times \text{1}{{\text{0}}^{-27}}\text{ }}{\dfrac{4}{3}\text{ }\times \text{ }\pi \times {{10}^{-39}}\text{ }}\text{ = }\dfrac{\text{3}\times \text{1}\text{.6}\times \text{1}{{\text{0}}^{-27}}\text{ }}{\text{4 }\times \text{ }\pi \times {{10}^{-39}}\text{ }}\text{ = }\dfrac{4.8}{\text{4 }\times \text{ }\pi }\text{ = 1}{{\text{0}}^{\text{12}}}\text{ kg/cc }$
Therefore the order of density of neutrons is $\text{1}{{\text{0}}^{\text{12}}}\text{ kg/cc}$.
So, the correct answer is “Option C”.
Note: Note that, the neutron is a charge less subatomic particle.it has a mass, it occupies volume, and thus has a definite density.it only contributes towards the mass of the nucleus but does not towards the charge. It remains affected by external fields. However, protons have a positive charge and mass. We are considered that neutron is a sphere to the simplified problems but the atom is a diffused mass.
$\text{ Density(d) = }\dfrac{\text{mass(m)}}{\text{Volume(V)}}\text{ }$
Individual or isolated neutron has a mass equal to $\text{ 9}\text{.39}\times \text{1}{{\text{0}}^{\text{8}}}\text{ eV/}{{\text{c}}^{\text{2}}}\text{ }$ or $\text{ 1}\text{.67 }\times \text{1}{{\text{0}}^{-27}}\text{ kg }$ and the mean radius of the neutron is $\text{ 1}\times \text{1}{{\text{0}}^{-13\text{ }}}cm\text{ }$ or $\text{ 1}\times \text{1}{{\text{0}}^{-15\text{ }}}m\text{ }$.
Complete Solution :
Neutrons are considered as perfectly sphere-shaped sub-particles. The volume of the sphere is given as follows,
$\text{ Volume of sphere = }\dfrac{4}{3}\text{ }\times \text{ }\pi {{\text{r}}^{\text{3}}}\text{ }$
Where r is the radius of the sphere.
- We are interested in determining the volume of the neutron. We know that the radius on neutron is $\text{ 1}\times \text{1}{{\text{0}}^{-13\text{ }}}cm\text{ }$. Let’s substitute the values of the radius in the volume relation to determine the volume of neutrons. It is calculated as follows,
$\begin{align}
& \text{ Volume of neutron = }\dfrac{4}{3}\text{ }\times \text{ }\pi \times {{\left( 1.0\times {{10}^{-13}} \right)}^{\text{3}}}\text{ } \\
& \Rightarrow \text{Volume of neutron = }\dfrac{4}{3}\text{ }\times \text{ }\pi \times {{10}^{-39}}\text{ } \\
\end{align}$
- We want to determine the density of neutrons in the nucleus. Density is defined as the ratio of mass to volume. In other words, it is the amount of mass occupied by the matter in the given space. Mathematically density is written as follows,
$\text{ Density(d) = }\dfrac{\text{mass(m)}}{\text{Volume(V)}}\text{ }$
We know that mass of a neutron is $\text{ m = 1}\text{.6}\times \text{1}{{\text{0}}^{-27}}\text{ kg }$
Let's substitute the values of mass and volume in the density relation. the density of neutron can be calculated as:
$\text{ Density of neutron = }\dfrac{\text{mass}}{\text{Volume}}\text{ =}\dfrac{\text{1}\text{.6}\times \text{1}{{\text{0}}^{-27}}\text{ kg }}{\dfrac{4}{3}\text{ }\times \text{ }\pi \times {{10}^{-39}}\text{ }}\text{ }$
- On further simplification we have
$\text{ Density of neutron =}\dfrac{\text{1}\text{.6}\times \text{1}{{\text{0}}^{-27}}\text{ }}{\dfrac{4}{3}\text{ }\times \text{ }\pi \times {{10}^{-39}}\text{ }}\text{ = }\dfrac{\text{3}\times \text{1}\text{.6}\times \text{1}{{\text{0}}^{-27}}\text{ }}{\text{4 }\times \text{ }\pi \times {{10}^{-39}}\text{ }}\text{ = }\dfrac{4.8}{\text{4 }\times \text{ }\pi }\text{ = 1}{{\text{0}}^{\text{12}}}\text{ kg/cc }$
Therefore the order of density of neutrons is $\text{1}{{\text{0}}^{\text{12}}}\text{ kg/cc}$.
So, the correct answer is “Option C”.
Note: Note that, the neutron is a charge less subatomic particle.it has a mass, it occupies volume, and thus has a definite density.it only contributes towards the mass of the nucleus but does not towards the charge. It remains affected by external fields. However, protons have a positive charge and mass. We are considered that neutron is a sphere to the simplified problems but the atom is a diffused mass.
Recently Updated Pages
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE
Trending doubts
The correct order of melting point of 14th group elements class 11 chemistry CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What is the specific heat capacity of ice water and class 11 physics CBSE
Define least count of vernier callipers How do you class 11 physics CBSE
What is the chemical name of Iron class 11 chemistry CBSE
The dimensional formula of dielectric strength A M1L1T2Q class 11 physics CBSE