Answer
Verified
460.8k+ views
Hint: - Number of ways of selecting ($ r$ numbers out of $n $ numbers) ${\text{ = }}{}^n{C_r}$
Number of ways of selecting (${\text{ 3}}$ consonants out of ${\text{ 7}}$)${\text{ = }}{}^7{C_3}$
And the number of ways of choosing (${\text{ 2}}$ vowels out of ${\text{ 4}}$)${\text{ = }}{}^4{C_2}$
And since each of the first groups can be associated with each of the second,
The number of combined groups, each containing ${\text{ 3}}$ consonants and${\text{ 2}}$ vowels, is
$
\Rightarrow {}^7{C_3} \times {}^4{C_2} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}} \times \dfrac{{4!}}{{2!\left( {4 - 2} \right)!}} \\
{\text{ = }}\dfrac{{7 \times 6 \times 5}}{{3 \times 2 \times 1}} \times \dfrac{{4 \times 3}}{{2 \times 1}} \\
{\text{ = 210}} \\
$
Number of groups, each having ${\text{ 3}}$ consonants and ${\text{ 2}}$ vowels ${\text{ = 210}}$
Each group contains $ 5$ letters
Number of ways of arranging $ 5$ letters among themselves ${\text{ = 5!}}$
$
{\text{ = }}5 \times 4 \times 3 \times 2 \times 1 \\
= 120 \\
$
$\therefore \;$ Required number of ways$ = (210 \times 120) = 25200$.
Hence, the answer is $25200$.
Note: - Whenever we face such types of questions,we have to first use the method of selection for selecting the numbers of vowels and constants that are given in question, and then by applying the method of rearranging to rearrange the words to get the total number of words.
Number of ways of selecting (${\text{ 3}}$ consonants out of ${\text{ 7}}$)${\text{ = }}{}^7{C_3}$
And the number of ways of choosing (${\text{ 2}}$ vowels out of ${\text{ 4}}$)${\text{ = }}{}^4{C_2}$
And since each of the first groups can be associated with each of the second,
The number of combined groups, each containing ${\text{ 3}}$ consonants and${\text{ 2}}$ vowels, is
$
\Rightarrow {}^7{C_3} \times {}^4{C_2} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}} \times \dfrac{{4!}}{{2!\left( {4 - 2} \right)!}} \\
{\text{ = }}\dfrac{{7 \times 6 \times 5}}{{3 \times 2 \times 1}} \times \dfrac{{4 \times 3}}{{2 \times 1}} \\
{\text{ = 210}} \\
$
Number of groups, each having ${\text{ 3}}$ consonants and ${\text{ 2}}$ vowels ${\text{ = 210}}$
Each group contains $ 5$ letters
Number of ways of arranging $ 5$ letters among themselves ${\text{ = 5!}}$
$
{\text{ = }}5 \times 4 \times 3 \times 2 \times 1 \\
= 120 \\
$
$\therefore \;$ Required number of ways$ = (210 \times 120) = 25200$.
Hence, the answer is $25200$.
Note: - Whenever we face such types of questions,we have to first use the method of selection for selecting the numbers of vowels and constants that are given in question, and then by applying the method of rearranging to rearrange the words to get the total number of words.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE