Answer
Verified
488.7k+ views
Hint: Use the formula: Number of words formed = Number of ways of selecting 3 consonants $\times $ number of ways of selecting 2 vowels $\times $ total permutations of 5 alphabets .
Complete step by step answer:
Number of ways of selecting 3 consonants is ${}^{7}{{C}_{3}}=35$, number of ways of selecting 2 vowels is ${}^{4}{{C}_{2}}=6$, and total permutations of 5 alphabets is $5!=120$.
We are given that out of 7 consonants and 4 vowels, words are to be formed each having only 3 consonants and 2 vowels.
We need to find the number of such words that can be formed.
We will use the principle of combinations to solve this question.
We know that the number of ways to choose r things from a total of n things is ${}^{n}{{C}_{r}}$
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$
In this question, we will need 3 consonants out of the 7 consonants and 2 vowels out of the 4 vowels.
First, we will find the number of ways to select 3 out of 7 consonants. This is given by:
${}^{7}{{C}_{3}}=\dfrac{7!}{3!4!}$
${}^{7}{{C}_{3}}=35$ …(1)
Now, we will find the number of ways to select 2 out of 4 consonants. This is given by:
${}^{4}{{C}_{2}}=\dfrac{4!}{2!2!}$
${}^{4}{{C}_{2}}=6$ …(2)
So, now we have all the letters which are required.
We now have to arrange these letters to form different words by making different permutations using these letters.
We know that the number of permutations of n alphabets is equal to $n!$.
We have 3 consonants and 2 vowels which makes it 5 alphabets.
So, the number of permutations using 5 alphabets is equal to $5!=120$ …(3)
We will now find the total number of required words formed by multiplying (1), (2), and (3)
Number of words formed = Number of ways of selecting 3 consonants $\times $ number of ways of selecting 2 vowels $\times $ total permutations of 5 alphabets
Number of words formed$={}^{7}{{C}_{3}}\times {}^{4}{{C}_{2}}\times 5!$
$=35\times 6\times 120=25200$
So, the total number of words formed are 25200
Hence, option (b) is correct.
Note: In this question, it is very important to know the following formulae: the number of ways to choose r things from a total of n things is ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, and the number of permutations of n alphabets is equal to $n!$.
Complete step by step answer:
Number of ways of selecting 3 consonants is ${}^{7}{{C}_{3}}=35$, number of ways of selecting 2 vowels is ${}^{4}{{C}_{2}}=6$, and total permutations of 5 alphabets is $5!=120$.
We are given that out of 7 consonants and 4 vowels, words are to be formed each having only 3 consonants and 2 vowels.
We need to find the number of such words that can be formed.
We will use the principle of combinations to solve this question.
We know that the number of ways to choose r things from a total of n things is ${}^{n}{{C}_{r}}$
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$
In this question, we will need 3 consonants out of the 7 consonants and 2 vowels out of the 4 vowels.
First, we will find the number of ways to select 3 out of 7 consonants. This is given by:
${}^{7}{{C}_{3}}=\dfrac{7!}{3!4!}$
${}^{7}{{C}_{3}}=35$ …(1)
Now, we will find the number of ways to select 2 out of 4 consonants. This is given by:
${}^{4}{{C}_{2}}=\dfrac{4!}{2!2!}$
${}^{4}{{C}_{2}}=6$ …(2)
So, now we have all the letters which are required.
We now have to arrange these letters to form different words by making different permutations using these letters.
We know that the number of permutations of n alphabets is equal to $n!$.
We have 3 consonants and 2 vowels which makes it 5 alphabets.
So, the number of permutations using 5 alphabets is equal to $5!=120$ …(3)
We will now find the total number of required words formed by multiplying (1), (2), and (3)
Number of words formed = Number of ways of selecting 3 consonants $\times $ number of ways of selecting 2 vowels $\times $ total permutations of 5 alphabets
Number of words formed$={}^{7}{{C}_{3}}\times {}^{4}{{C}_{2}}\times 5!$
$=35\times 6\times 120=25200$
So, the total number of words formed are 25200
Hence, option (b) is correct.
Note: In this question, it is very important to know the following formulae: the number of ways to choose r things from a total of n things is ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, and the number of permutations of n alphabets is equal to $n!$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE