Answer
Verified
478.8k+ views
Hint: To find oxidation number of N in \[N{H_4}N{O_3}\], we have to break it into ion and find the oxidation number of N of both ions and it is going to be different for both N. We have to break them into ion because \[N{H_4}N{O_3}\]is an ionic compound.
Complete answer:
When we break this into ions, we will see \[NH_4^ + \] and \[N0_3^ - \].
For \[NH_4^ + \] oxidation state = +1
N+4H=+1
N+4(+1) =+1 …. (Oxidation number of H =+1)
N+4=+1
N=-3
For \[N0_3^ - \] oxidation state = -1
N+3(O)=-1
N+3(-2) =-1 … (Oxidation number for O=-2)
N-6=-1
N=-1+6
N=+5
Therefore, Oxidation state of N in \[NH_4^ + \]is -3 and in \[N0_3^ - \] is +5.
Note: As for\[NH_4^ + \] ion, N nominally gains one electron from three of the four hydrogen atoms it is bound to; the fourth hydrogen, that nominally is an H+ ion, is bound by nitrogen by means of its lone pair (dative bond), but, owing to the higher electronegativity of N with respect to H, this pair of electrons is closer to N, so that, as regards this dative bond, there is no gain or loss of electrons. Therefore, as a whole, N nominally gains 3 electrons, hence its oxidation number -3. Of course, in the real \[NH_4^ + \] ion, the positive charge is evenly distributed over all of the four hydrogen atoms, owing to resonance.
As for\[N0_3^ - \]ion, one of the three oxygen atoms nominally have a -1 charge (one electron more than neutrality), so that it has only one unpaired electron. The N atom employs one of its three unpaired electrons to bind that “charged” oxygen atom, and the other two unpaired electrons to bind a neutral oxygen atom. As for the third, neutral, oxygen atom, nitrogen binds it by means of its lone pair (dative bond), having the oxygen atom brought its two formerly unpaired electrons in the same orbital, thus providing an empty orbital to accommodate the lone pair of the nitrogen. Since oxygen is more electronegative than nitrogen, the latter has nominally lost 5 electrons (the previously unpaired three, and the lone pair), hence its +5 oxidation number. Of course, in the real \[N0_3^ - \]ion, the three oxygen atoms are perfectly identical, as regards charge and kind of bond, owing to resonance.
Complete answer:
When we break this into ions, we will see \[NH_4^ + \] and \[N0_3^ - \].
For \[NH_4^ + \] oxidation state = +1
N+4H=+1
N+4(+1) =+1 …. (Oxidation number of H =+1)
N+4=+1
N=-3
For \[N0_3^ - \] oxidation state = -1
N+3(O)=-1
N+3(-2) =-1 … (Oxidation number for O=-2)
N-6=-1
N=-1+6
N=+5
Therefore, Oxidation state of N in \[NH_4^ + \]is -3 and in \[N0_3^ - \] is +5.
Note: As for\[NH_4^ + \] ion, N nominally gains one electron from three of the four hydrogen atoms it is bound to; the fourth hydrogen, that nominally is an H+ ion, is bound by nitrogen by means of its lone pair (dative bond), but, owing to the higher electronegativity of N with respect to H, this pair of electrons is closer to N, so that, as regards this dative bond, there is no gain or loss of electrons. Therefore, as a whole, N nominally gains 3 electrons, hence its oxidation number -3. Of course, in the real \[NH_4^ + \] ion, the positive charge is evenly distributed over all of the four hydrogen atoms, owing to resonance.
As for\[N0_3^ - \]ion, one of the three oxygen atoms nominally have a -1 charge (one electron more than neutrality), so that it has only one unpaired electron. The N atom employs one of its three unpaired electrons to bind that “charged” oxygen atom, and the other two unpaired electrons to bind a neutral oxygen atom. As for the third, neutral, oxygen atom, nitrogen binds it by means of its lone pair (dative bond), having the oxygen atom brought its two formerly unpaired electrons in the same orbital, thus providing an empty orbital to accommodate the lone pair of the nitrogen. Since oxygen is more electronegative than nitrogen, the latter has nominally lost 5 electrons (the previously unpaired three, and the lone pair), hence its +5 oxidation number. Of course, in the real \[N0_3^ - \]ion, the three oxygen atoms are perfectly identical, as regards charge and kind of bond, owing to resonance.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE