Oxidation of ethanedioate ions by acidified manganate (VII) ions is very slow at room temperature.
\[2Mn{{O}_{4}}^{-}+5{{C}_{2}}{{O}_{4}}^{2-}+16{{H}^{+}}\to 2M{{n}^{3+}}+10C{{O}_{2}}+8{{H}_{2}}O\]\[2Mn{{O}_{4}}^{-}+5{{C}_{2}}{{O}_{4}}^{2-}+16{{H}^{+}}\to 2M{{n}^{2+}}+10C{{O}_{2}}+8{{H}_{2}}O\]
\[M{{n}^{2+}}\]ions catalyse this reaction.
Which graph shows how the concentration of acidified manganate (VII) ions varies after ethanedioate ions are added?
Answer
Verified
483.9k+ views
Hint: As the catalyst of this reaction (\[M{{n}^{2+}}\]) is produced in the course of this reaction, this would help steadily increase the rate of reaction. Pick an answer with this logic in mind.
Complete step by step solution:
Let us analyse this reaction in a gradual manner to ensure that we understand this phenomenon in its entirety.
The reaction between manganate (VII) ions and ethanedioate ions at room temperature is fairly slow initially but quickens as the reaction proceeds. Manganese (II) ions, \[M{{n}^{2+}}\]are formed as the reaction proceeds and they act as an auto-catalyst. Once a small amount of \[M{{n}^{2+}}\] ions have formed, they can react with \[Mn{{O}_{4}}^{-}\] ions to form \[M{{n}^{3+}}\] ions as an intermediate species. These then react with the \[{{C}_{2}}{{O}_{4}}^{2-}\] ions to reform \[M{{n}^{2+}}\].
As a few \[M{{n}^{2+}}\]ions are formed, the rate increases and proceeds following first-order kinetics with respect to the manganate (VII) ions. Adding \[M{{n}^{2+}}\]ions at the beginning of the reaction results in a smooth decrease in concentration with time from the outset. As an extension task the students can go on to use their plots of concentration of \[Mn{{O}_{4}}^{-}\]ions against time to determine the rate of the reaction for different concentrations of \[Mn{{O}_{4}}^{-}\]ions.
A plot of log(rate) against log[\[Mn{{O}_{4}}^{-}\]]should then be a straight line with a gradient of 1 indicating that the reaction is first order with respect to manganate(VII) ions.
Therefore, the answer to this question would be (B).
Note: If the concentration of any one of the reactants is plotted against time, then it has to decrease as time goes on. While if the same happens with the product compounds, then with time their concentration would increase. The only exception to this case would be the reactions in dynamic equilibrium.
The phenomenon involved here is known as autocatalysis, which means one of the products of this reaction behaves as a catalyst. Bear in mind, that the speed of reaction will gradually increase if this is the case. If the reaction is already provided with that particular product right from the start, then the answer to this question would have been nearly similar to option (C).
Complete step by step solution:
Let us analyse this reaction in a gradual manner to ensure that we understand this phenomenon in its entirety.
The reaction between manganate (VII) ions and ethanedioate ions at room temperature is fairly slow initially but quickens as the reaction proceeds. Manganese (II) ions, \[M{{n}^{2+}}\]are formed as the reaction proceeds and they act as an auto-catalyst. Once a small amount of \[M{{n}^{2+}}\] ions have formed, they can react with \[Mn{{O}_{4}}^{-}\] ions to form \[M{{n}^{3+}}\] ions as an intermediate species. These then react with the \[{{C}_{2}}{{O}_{4}}^{2-}\] ions to reform \[M{{n}^{2+}}\].
As a few \[M{{n}^{2+}}\]ions are formed, the rate increases and proceeds following first-order kinetics with respect to the manganate (VII) ions. Adding \[M{{n}^{2+}}\]ions at the beginning of the reaction results in a smooth decrease in concentration with time from the outset. As an extension task the students can go on to use their plots of concentration of \[Mn{{O}_{4}}^{-}\]ions against time to determine the rate of the reaction for different concentrations of \[Mn{{O}_{4}}^{-}\]ions.
A plot of log(rate) against log[\[Mn{{O}_{4}}^{-}\]]should then be a straight line with a gradient of 1 indicating that the reaction is first order with respect to manganate(VII) ions.
Therefore, the answer to this question would be (B).
Note: If the concentration of any one of the reactants is plotted against time, then it has to decrease as time goes on. While if the same happens with the product compounds, then with time their concentration would increase. The only exception to this case would be the reactions in dynamic equilibrium.
The phenomenon involved here is known as autocatalysis, which means one of the products of this reaction behaves as a catalyst. Bear in mind, that the speed of reaction will gradually increase if this is the case. If the reaction is already provided with that particular product right from the start, then the answer to this question would have been nearly similar to option (C).
Recently Updated Pages
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE
Trending doubts
The correct order of melting point of 14th group elements class 11 chemistry CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What is the specific heat capacity of ice water and class 11 physics CBSE
State the laws of reflection of light
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Why does niobium have a d4s1 electron configuration class 11 chemistry CBSE