
P is any point on the bisector of $\angle AOB$. If $BO \bot PN$ and $OA \bot PM$, then $PM \ne PN$
A. True
B. False
Answer
552.6k+ views
Hint: An angle bisector is that which divides the angle into two equal angles with equal measures, and also the each point of the angle bisector is equidistant from the sides of the angle. So basically the angle bisector is a line which divides the angle into two equal angles. Here $OP$ is the angular bisector in this particular problem.
Complete step by step solution:
Here consider the figure in the question which is clearly visible that $OP$ is the angular bisector.
$OP$ divides the $\angle AOB$ into two equal angles which are $\angle AOP$ and $\angle PON$,
$\therefore \;\angle AOP = \angle PON$
Also given that $BO \bot PN$ , $OA \bot PM$,
$\because OP$ is the angular bisector of $\angle AOB$ and hence the lengths of $OM$ and $ON$ are equal:
$ \Rightarrow OM = ON$
From the above steps it is understood that:
$ \Rightarrow \angle AOP = \angle PON$
$ \Rightarrow BO \bot PN,OA \bot PM$
$ \Rightarrow OM = ON$
Hence from the above equations we can conclude that $PM = PN$,
$\therefore PM = PN$
Correct option is B.
Note: Always remember that whenever a line bisects an angle and makes right angles with the sides of the angle, then the sides from point of intersection will be equal and also that lengths from point to the sides are also equal.
Complete step by step solution:
Here consider the figure in the question which is clearly visible that $OP$ is the angular bisector.
$OP$ divides the $\angle AOB$ into two equal angles which are $\angle AOP$ and $\angle PON$,
$\therefore \;\angle AOP = \angle PON$
Also given that $BO \bot PN$ , $OA \bot PM$,
$\because OP$ is the angular bisector of $\angle AOB$ and hence the lengths of $OM$ and $ON$ are equal:
$ \Rightarrow OM = ON$
From the above steps it is understood that:
$ \Rightarrow \angle AOP = \angle PON$
$ \Rightarrow BO \bot PN,OA \bot PM$
$ \Rightarrow OM = ON$
Hence from the above equations we can conclude that $PM = PN$,
$\therefore PM = PN$
Correct option is B.
Note: Always remember that whenever a line bisects an angle and makes right angles with the sides of the angle, then the sides from point of intersection will be equal and also that lengths from point to the sides are also equal.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

