Answer
Verified
429.9k+ views
Hint: An angle bisector is that which divides the angle into two equal angles with equal measures, and also the each point of the angle bisector is equidistant from the sides of the angle. So basically the angle bisector is a line which divides the angle into two equal angles. Here $OP$ is the angular bisector in this particular problem.
Complete step by step solution:
Here consider the figure in the question which is clearly visible that $OP$ is the angular bisector.
$OP$ divides the $\angle AOB$ into two equal angles which are $\angle AOP$ and $\angle PON$,
$\therefore \;\angle AOP = \angle PON$
Also given that $BO \bot PN$ , $OA \bot PM$,
$\because OP$ is the angular bisector of $\angle AOB$ and hence the lengths of $OM$ and $ON$ are equal:
$ \Rightarrow OM = ON$
From the above steps it is understood that:
$ \Rightarrow \angle AOP = \angle PON$
$ \Rightarrow BO \bot PN,OA \bot PM$
$ \Rightarrow OM = ON$
Hence from the above equations we can conclude that $PM = PN$,
$\therefore PM = PN$
Correct option is B.
Note: Always remember that whenever a line bisects an angle and makes right angles with the sides of the angle, then the sides from point of intersection will be equal and also that lengths from point to the sides are also equal.
Complete step by step solution:
Here consider the figure in the question which is clearly visible that $OP$ is the angular bisector.
$OP$ divides the $\angle AOB$ into two equal angles which are $\angle AOP$ and $\angle PON$,
$\therefore \;\angle AOP = \angle PON$
Also given that $BO \bot PN$ , $OA \bot PM$,
$\because OP$ is the angular bisector of $\angle AOB$ and hence the lengths of $OM$ and $ON$ are equal:
$ \Rightarrow OM = ON$
From the above steps it is understood that:
$ \Rightarrow \angle AOP = \angle PON$
$ \Rightarrow BO \bot PN,OA \bot PM$
$ \Rightarrow OM = ON$
Hence from the above equations we can conclude that $PM = PN$,
$\therefore PM = PN$
Correct option is B.
Note: Always remember that whenever a line bisects an angle and makes right angles with the sides of the angle, then the sides from point of intersection will be equal and also that lengths from point to the sides are also equal.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE