Packing fraction in face centered cubic unit cell is:
(A) 0.7406
(B) 0.6802
(C) 0.5236
(D) None of the above
Answer
Verified
433.8k+ views
Hint: For a better solution it is very important to understand what is packing fraction So Packing fraction is defined as a way of expressing the variation of isotopic mass from the whole mass number (atomic mass). This fraction can have positive or can have negative sign. This difference is due to the transformation of mass into energy in the formation of nucleus.
Complete step by step solution:
Let us know what is face centered cubic unit cell and then solve for its packing fraction:
Packing faction or Packing efficiency is the percentage of total space filled by the particles.
The face centered unit cell (FCC) contains atoms at all the corners of the crystal lattice and at the center of all the faces of the cube. The atom present at the face centered is shared between 2 adjacent unit cells and only 1/2 of each atom belongs to an individual cell. The packing efficiency of FCC lattice is 74%.
Let r be the radius of the sphere and $ a $ be the edge length of the cube and the number of atoms or spheres is n that is equal to 4.
As there are 4 sphere in FCC unit cell
Volume of four spheres is given by
$ V = 4 \times \dfrac{4}{3}\pi {r^3} $
In FCC, the corner spheres are in touch with the face centered sphere so the relation between the edge length and radius of the sphere is given by
$ r = \dfrac{a}{{4\sqrt 2 }} $
Substituting the above values in the below equation and solving:
$ packing{\text{ }}efficiency = \dfrac{{volume{\text{ }}occupied{\text{ }}by{\text{ }}all{\text{ }}the{\text{ }}spheres{\text{ in }}unit{\text{ }}cell}}{{Total{\text{ }}volume{\text{ }}of{\text{ }}the{\text{ }}unit{\text{ }}cell}} \times 100 $
$ Packing{\text{ }}fraction = \dfrac{{n \times \dfrac{4}{3}\pi {r^3}}}{{{a^3}}} $
$ packing{\text{ }}fraction = \dfrac{{4 \times \dfrac{4}{3} \times {{\left( {\dfrac{a}{{4\sqrt 2 }}} \right)}^3}}}{{{a^3}}} = \dfrac{\pi }{{3\sqrt 2 }} = 0.74 $
Hence the correct option is (A).
Note:
The relationship between the edge length of the cube unit and the radius of the sphere can be properly derived by a proper diagram and mathematical theorems. The packing efficiency of different cubic unit cells vary according to their structure and shape.
Complete step by step solution:
Let us know what is face centered cubic unit cell and then solve for its packing fraction:
Packing faction or Packing efficiency is the percentage of total space filled by the particles.
The face centered unit cell (FCC) contains atoms at all the corners of the crystal lattice and at the center of all the faces of the cube. The atom present at the face centered is shared between 2 adjacent unit cells and only 1/2 of each atom belongs to an individual cell. The packing efficiency of FCC lattice is 74%.
Let r be the radius of the sphere and $ a $ be the edge length of the cube and the number of atoms or spheres is n that is equal to 4.
As there are 4 sphere in FCC unit cell
Volume of four spheres is given by
$ V = 4 \times \dfrac{4}{3}\pi {r^3} $
In FCC, the corner spheres are in touch with the face centered sphere so the relation between the edge length and radius of the sphere is given by
$ r = \dfrac{a}{{4\sqrt 2 }} $
Substituting the above values in the below equation and solving:
$ packing{\text{ }}efficiency = \dfrac{{volume{\text{ }}occupied{\text{ }}by{\text{ }}all{\text{ }}the{\text{ }}spheres{\text{ in }}unit{\text{ }}cell}}{{Total{\text{ }}volume{\text{ }}of{\text{ }}the{\text{ }}unit{\text{ }}cell}} \times 100 $
$ Packing{\text{ }}fraction = \dfrac{{n \times \dfrac{4}{3}\pi {r^3}}}{{{a^3}}} $
$ packing{\text{ }}fraction = \dfrac{{4 \times \dfrac{4}{3} \times {{\left( {\dfrac{a}{{4\sqrt 2 }}} \right)}^3}}}{{{a^3}}} = \dfrac{\pi }{{3\sqrt 2 }} = 0.74 $
Hence the correct option is (A).
Note:
The relationship between the edge length of the cube unit and the radius of the sphere can be properly derived by a proper diagram and mathematical theorems. The packing efficiency of different cubic unit cells vary according to their structure and shape.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE