What is the path difference between two waves ${y_1} = {a_1}\sin (\omega t - \dfrac{{2\pi x}}{\lambda })$ and ${y_2} = {a_2}\cos (\omega t - \dfrac{{2\pi x}}{\lambda } + \phi )$ ?
$
{\text{A}}{\text{. }}\dfrac{\lambda }{{2\pi }}[\phi + \dfrac{\pi }{2}] \\
{\text{B}}{\text{.}}\dfrac{\lambda }{{2\pi }}[\phi ] \\
{\text{C}}{\text{. }}\dfrac{\lambda }{{2\pi }}[\phi - \dfrac{\pi }{2}] \\
{\text{D}}{\text{. }}\dfrac{{2\pi }}{\lambda }[\phi ] \\
$
Answer
Verified
490.2k+ views
Hint: The two waves are given in different functions. So, convert both of them to either sine or cosine. Find the phase difference between them, then get the path difference.
Formula used:
$\cos \theta = \sin (\dfrac{\pi }{2} + \theta )$
$\Delta x = \dfrac{\lambda }{{2\pi }} \times \Delta \phi $ , where $\Delta x,\Delta \phi $ are the path difference and phase difference respectively.
This shows that the phase difference and the path difference are directly proportional to each other.
Complete step-by-step solution -
Path difference is the difference in the distance traveled by two waves at the meeting point. It measures how much a wave is shifted from another.
The phase difference is simply the difference in the phase of the two traveling waves. The phase difference is an important property as it determines the nature of the interference pattern and diffraction pattern obtained.
If the path difference between two waves is an integral multiple $(n\lambda )$ of wavelength, we get constructive interference. When the path difference between two waves is an odd multiple of half wavelength$(\dfrac{{(2n - 1)\lambda }}{2})$ , we get destructive interference.
${y_1} = {a_1}\sin (\omega t - \dfrac{{2\pi x}}{\lambda })$
${y_2} = {a_2}\cos (\omega t - \dfrac{{2\pi x}}{\lambda } + \phi )$
Converting $y_2$ into sine function
${y_2} = {a_2}\sin (\dfrac{\pi }{2} + (\omega t - \dfrac{{2\pi x}}{\lambda } + \phi ))$
Subtract the angles of ${y_1}{\text{ }}and{\text{ }}{y_2}$
So, the phase difference is, $\dfrac{\pi }{2} + \phi $
Now, substituting the value of phase difference in the formula
$\Delta x = \dfrac{\lambda }{{2\pi }} \times \Delta \phi $
We get the path difference as:
$\dfrac{\lambda }{{2\pi }} \times [\dfrac{\pi }{2} + \phi ]$
The correct option is (A).
Note: While converting sine to cosine or vice versa, take care of the sign. This is a simple formula based question, so remember the formula.
Formula used:
$\cos \theta = \sin (\dfrac{\pi }{2} + \theta )$
$\Delta x = \dfrac{\lambda }{{2\pi }} \times \Delta \phi $ , where $\Delta x,\Delta \phi $ are the path difference and phase difference respectively.
This shows that the phase difference and the path difference are directly proportional to each other.
Complete step-by-step solution -
Path difference is the difference in the distance traveled by two waves at the meeting point. It measures how much a wave is shifted from another.
The phase difference is simply the difference in the phase of the two traveling waves. The phase difference is an important property as it determines the nature of the interference pattern and diffraction pattern obtained.
If the path difference between two waves is an integral multiple $(n\lambda )$ of wavelength, we get constructive interference. When the path difference between two waves is an odd multiple of half wavelength$(\dfrac{{(2n - 1)\lambda }}{2})$ , we get destructive interference.
${y_1} = {a_1}\sin (\omega t - \dfrac{{2\pi x}}{\lambda })$
${y_2} = {a_2}\cos (\omega t - \dfrac{{2\pi x}}{\lambda } + \phi )$
Converting $y_2$ into sine function
${y_2} = {a_2}\sin (\dfrac{\pi }{2} + (\omega t - \dfrac{{2\pi x}}{\lambda } + \phi ))$
Subtract the angles of ${y_1}{\text{ }}and{\text{ }}{y_2}$
So, the phase difference is, $\dfrac{\pi }{2} + \phi $
Now, substituting the value of phase difference in the formula
$\Delta x = \dfrac{\lambda }{{2\pi }} \times \Delta \phi $
We get the path difference as:
$\dfrac{\lambda }{{2\pi }} \times [\dfrac{\pi }{2} + \phi ]$
The correct option is (A).
Note: While converting sine to cosine or vice versa, take care of the sign. This is a simple formula based question, so remember the formula.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
State the laws of reflection of light