Answer
Verified
398.4k+ views
Hint: Remember that the acidity of any compound is proportional to its ability to release \[{H^ + }\] ions, and the more stable the conjugate base, the stronger the acid. You can now easily answer the given question by using this.
Complete answer:
Since the phenoxide ion is more stable than the alkoxide ion, phenol is more acidic than cyclohexanol and acyclic alcohols. The negative charge in an alkoxide ion, such as the one formed from cyclohexanol, is concentrated at the oxygen atom. The negative charge in a phenoxide ion, on the other hand, is delocalized over the benzene ring and thus resonance-stabilized.
In the case of phenols, the phenols lose \[{{\text{H}}^{\text{ + }}}\] in which the negative charge on the oxygen atom is delocalized around the ring by resonance, resulting in phenoxide ions. The negative charge on oxygen is delocalized to the ortho and para carbon atoms in this way, and the phenoxide ion becomes a stable resonating structure. This makes phenol more acidic than alcohols by stabilising the phenoxide ion.
So, since it is difficult to extract the hydrogen ion from ethanol, we can assume that ethanol is less acidic than phenol, whereas phenol is more acidic than ethanol because it can quickly lose the hydrogen ion due to electron delocalization by resonance in phenols.
As phenol loses its hydrogen ion, it produces phenoxide, which is stabilised to some degree because the negative charge on the oxygen atom is delocalized across the ring, which ensures that it is shared by a number of carbon atoms in the benzene ring. As a result, the more stable the resulted ion is, the more likely it is to shape.
Furthermore, the presence of an electron withdrawing group raises the acidity of phenol by stabilising the phenoxide ion formed, while the presence of an electron releasing group lowers the acidity of phenol by destabilising the phenoxide ion formed.
Note:
It's worth noting that phenol is more acidic than water, while alcohols are more acidic than water. Dow's method is also used to produce phenol (from chlorobenzene by cumene process). Also, keep in mind that carbolic acid is a liquid solution of phenol containing approximately \[5\% \]water. When exposed to air and light, phenol turns pink.
Complete answer:
Since the phenoxide ion is more stable than the alkoxide ion, phenol is more acidic than cyclohexanol and acyclic alcohols. The negative charge in an alkoxide ion, such as the one formed from cyclohexanol, is concentrated at the oxygen atom. The negative charge in a phenoxide ion, on the other hand, is delocalized over the benzene ring and thus resonance-stabilized.
In the case of phenols, the phenols lose \[{{\text{H}}^{\text{ + }}}\] in which the negative charge on the oxygen atom is delocalized around the ring by resonance, resulting in phenoxide ions. The negative charge on oxygen is delocalized to the ortho and para carbon atoms in this way, and the phenoxide ion becomes a stable resonating structure. This makes phenol more acidic than alcohols by stabilising the phenoxide ion.
So, since it is difficult to extract the hydrogen ion from ethanol, we can assume that ethanol is less acidic than phenol, whereas phenol is more acidic than ethanol because it can quickly lose the hydrogen ion due to electron delocalization by resonance in phenols.
As phenol loses its hydrogen ion, it produces phenoxide, which is stabilised to some degree because the negative charge on the oxygen atom is delocalized across the ring, which ensures that it is shared by a number of carbon atoms in the benzene ring. As a result, the more stable the resulted ion is, the more likely it is to shape.
Furthermore, the presence of an electron withdrawing group raises the acidity of phenol by stabilising the phenoxide ion formed, while the presence of an electron releasing group lowers the acidity of phenol by destabilising the phenoxide ion formed.
Note:
It's worth noting that phenol is more acidic than water, while alcohols are more acidic than water. Dow's method is also used to produce phenol (from chlorobenzene by cumene process). Also, keep in mind that carbolic acid is a liquid solution of phenol containing approximately \[5\% \]water. When exposed to air and light, phenol turns pink.
Recently Updated Pages
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
The following compounds can be distinguished by class 12 chemistry JEE_Main
Which of the following is a redox reaction class null chemistry null
A conducting circular loop of radius r carries a constant class 12 physics JEE_Main
Two forms of Dglucopyranose are called class 12 chemistry JEE_Main
A long cylindrical shell carries positive surface charge class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE