
When the polarity of bond ${{A - B}}$ is expressed in “ $\Delta $” expressed in SI units, the relationship between their electronegativity difference is:
A.${{{x}}_{{A}}}{{ - }}{{{x}}_{{B}}}{{ = 0}}{{.1071 }}\Delta $
B.${{{x}}_{{A}}}{{ - }}{{{x}}_{{B}}}{{ = }}\Delta \sqrt {0.208} $
C.${{{x}}_{{A}}}{{ - }}{{{x}}_{{B}}}{{ = 0}}{{.2071 }}\sqrt {{\Delta }} $
D.${{{x}}_{{A}}}{{ - }}{{{x}}_{{B}}}{{ = 0}}{{.1071 }}\sqrt {{\Delta }} $
Answer
463.8k+ views
Hint: We know that ${{1 eV/atom = 96}}{{.4 KJ/mol}}$. The polarity of a bond is the separation of electric charge along with a bond which results in a dipole moment. In ${{{C}}^{{{\delta + }}}}{{ - C}}{{{l}}^{{{\delta - }}}}$ , the Chlorine is more electronegative than Carbon, so we could see that chlorine pulls the electrons and acquires a partial negative charge. Therefore, on finding the electronegativity difference between the atoms, we can determine the polarity of the bond.
Complete step by step answer:
We know that in a molecule with a difference in electronegativity in its atoms, the electrons are shifted to the more electronegative atom.
The greater the electronegativity, the more will be the partial charge as we saw in ${{{C}}^{{{\delta + }}}}{{ - C}}{{{l}}^{{{\delta - }}}}$
If the electronegativity of both the atoms is equal, then it is a nonpolar molecule.
It is given that the polarity of the bond ${{A - B}}$ is $\Delta $.
As we mentioned above the difference in electronegativity of both the atoms can give the polarity.
${{{x}}_{{A}}}{{ }}$ be the electronegativity of A and let ${{{x}}_{{B}}}$ be the electronegativity of B.
According to Pauling Scale, We know that electronegativity difference can be written as ${{{x}}_{{A}}}{{ - }}{{{x}}_{{B}}}{{ = (eV}}{{{)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}}\sqrt {{{{E}}_{{{A - B}}}}{{ - }}\dfrac{{{{{E}}_{{{A - A}}}}{{ + }}{{{E}}_{{{B - B}}}}}}{{{2}}}} $ where ${{{E}}_{{{A - B}}}}$ is the bond energy of ${{A - B}}$ where ${{{E}}_{{{A - A}}}}{{ and }}{{{E}}_{{{B - B}}}}$ are the bond dissociation energies. Here the bond energy Is $\Delta $
So ${{{x}}_{{A}}}{{ - }}{{{x}}_{{B}}}{{ = (eV}}{{{)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}}{{ }}\sqrt {{\Delta }} $
${{1 eV/atom = 96}}{{.4 KJ/mol}}$
So, ${{{(eV)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}}{{ = }}\dfrac{{{1}}}{{\sqrt {{{96}}{{.49}}} }}$ So ${{eV = 0}}{{.1071}}$
Now, we can say that ${{{x}}_{{A}}}{{ - }}{{{x}}_{{B}}}{{ = 0}}{{.1071 }}\sqrt {{\Delta }} $ where $\Delta $ is the polarity.
Polarity is measured by the dipole moment of ${{A - B}}$
The polarity can be measured as bond energy, as the difference in experimental and calculated. Therefore when its SI unit is ${{KJ/mol}}$ and the difference in electronegativity is ${{{x}}_{{A}}}{{ - }}{{{x}}_{{B}}}{{ = 0}}{{.1071 }}\sqrt {{\Delta }} $
Therefore, the correct answer is an option (D).
Note:
${{1 eV/atom = 23}}{{.06 Kcal/mol}}$ . When bond energy is calculated in ${{Kcal/mol}}$ , the answer will be ${{{x}}_{{A}}}{{ - }}{{{x}}_{{B}}}{{ = 0}}{{.208}}\sqrt {{\Delta }} $ . We have come across a term dipole moment, it is used to measure the polarity of bond within a molecule, and is found in molecules having separation of positive and negative charges.
Complete step by step answer:
We know that in a molecule with a difference in electronegativity in its atoms, the electrons are shifted to the more electronegative atom.
The greater the electronegativity, the more will be the partial charge as we saw in ${{{C}}^{{{\delta + }}}}{{ - C}}{{{l}}^{{{\delta - }}}}$
If the electronegativity of both the atoms is equal, then it is a nonpolar molecule.
It is given that the polarity of the bond ${{A - B}}$ is $\Delta $.
As we mentioned above the difference in electronegativity of both the atoms can give the polarity.
${{{x}}_{{A}}}{{ }}$ be the electronegativity of A and let ${{{x}}_{{B}}}$ be the electronegativity of B.
According to Pauling Scale, We know that electronegativity difference can be written as ${{{x}}_{{A}}}{{ - }}{{{x}}_{{B}}}{{ = (eV}}{{{)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}}\sqrt {{{{E}}_{{{A - B}}}}{{ - }}\dfrac{{{{{E}}_{{{A - A}}}}{{ + }}{{{E}}_{{{B - B}}}}}}{{{2}}}} $ where ${{{E}}_{{{A - B}}}}$ is the bond energy of ${{A - B}}$ where ${{{E}}_{{{A - A}}}}{{ and }}{{{E}}_{{{B - B}}}}$ are the bond dissociation energies. Here the bond energy Is $\Delta $
So ${{{x}}_{{A}}}{{ - }}{{{x}}_{{B}}}{{ = (eV}}{{{)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}}{{ }}\sqrt {{\Delta }} $
${{1 eV/atom = 96}}{{.4 KJ/mol}}$
So, ${{{(eV)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}}{{ = }}\dfrac{{{1}}}{{\sqrt {{{96}}{{.49}}} }}$ So ${{eV = 0}}{{.1071}}$
Now, we can say that ${{{x}}_{{A}}}{{ - }}{{{x}}_{{B}}}{{ = 0}}{{.1071 }}\sqrt {{\Delta }} $ where $\Delta $ is the polarity.
Polarity is measured by the dipole moment of ${{A - B}}$
The polarity can be measured as bond energy, as the difference in experimental and calculated. Therefore when its SI unit is ${{KJ/mol}}$ and the difference in electronegativity is ${{{x}}_{{A}}}{{ - }}{{{x}}_{{B}}}{{ = 0}}{{.1071 }}\sqrt {{\Delta }} $
Therefore, the correct answer is an option (D).
Note:
${{1 eV/atom = 23}}{{.06 Kcal/mol}}$ . When bond energy is calculated in ${{Kcal/mol}}$ , the answer will be ${{{x}}_{{A}}}{{ - }}{{{x}}_{{B}}}{{ = 0}}{{.208}}\sqrt {{\Delta }} $ . We have come across a term dipole moment, it is used to measure the polarity of bond within a molecule, and is found in molecules having separation of positive and negative charges.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE

How did silk routes link the world Explain with three class 11 social science CBSE

What are the various challenges faced by political class 11 social science CBSE
