Answer
Verified
460.8k+ views
Hint: We have a right angled triangle and a perpendicular to the hypotenuse of this triangle. We will use the Pythagoras theorem multiple times to prove that $\text{P}{{\text{M}}^{2}}=\text{QM}\cdot \text{MR}$. The Pythagoras theorem states that in a right angled triangle, ${{\left( \text{Hypotenuse} \right)}^{2}}={{\left( \text{side}_1 \right)}^{2}}+{{\left( \text{side}_2 \right)}^{2}}$. We will also use the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$.
Complete step-by-step solution:
Let us draw a rough diagram of the triangle $\text{PQR}$.
In $\Delta \text{PQR}$, $\angle \text{QPR}$ is the right angle. According to the Pythagoras theorem, in a right angled triangle, ${{\left( \text{Hypotenuse} \right)}^{2}}={{\left( \text{side }_1 \right)}^{2}}+{{\left( \text{side}_2 \right)}^{2}}$. Using the Pythagoras theorem on $\Delta \text{PQR}$, we get the following equation,
$\text{Q}{{\text{R}}^{2}}=\text{P}{{\text{Q}}^{2}}+\text{P}{{\text{R}}^{2}}....(i)$
Now, we know that $\text{PM}\bot \text{QR}$. Let us consider $\Delta \text{PMQ}$ with the right angle at vertex $\text{M}$. Using the Pythagoras theorem for this triangle, we get
$\text{P}{{\text{Q}}^{2}}=\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}$.
Next, we will consider $\Delta \text{PMR}$ with the right angle at vertex $\text{M}$. In this triangle, we will use the Pythagoras theorem again, as follows,
$\text{P}{{\text{R}}^{2}}=\text{P}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}}$.
Now, substituting the values of $\text{P}{{\text{Q}}^{2}}$ and $\text{P}{{\text{R}}^{2}}$ in equation $(i)$, we get
$\begin{align}
&\text{Q}{{\text{R}}^{2}}=\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}+\text{P}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}} \\
& =2\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}}
\end{align}$
Now, from the above diagram, we can see that $\text{QR = QM + MR}$. Substituting this value in the above equation, we get
${{\left(\text{QM+MR}\right)}^{2}}=2\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}}$
We will expand the left hand side of the above equation using the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$. So, we have the following equation,
$\text{Q}{{\text{M}}^{2}}\text{+M}{{\text{R}}^{2}}+2\text{QM}\cdot \text{MR}=2\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}}$
Simplifying the above equation, we get
$\begin{align}
& 2\text{QM}\cdot \text{MR}=2\text{P}{{\text{M}}^{2}} \\
& \therefore \text{QM}\cdot \text{MR}=\text{P}{{\text{M}}^{2}} \\
\end{align}$
Hence, proved.
Note: It is useful to draw a rough diagram for such types of questions. Looking at the diagram, it becomes clear which triangles should be used to get the required result. When we have a right-angled triangle, it is natural to consider the use of the Pythagoras theorem. It is better to write the names of all sides explicitly so that minor mistakes in calculations can be avoided.
Complete step-by-step solution:
Let us draw a rough diagram of the triangle $\text{PQR}$.
In $\Delta \text{PQR}$, $\angle \text{QPR}$ is the right angle. According to the Pythagoras theorem, in a right angled triangle, ${{\left( \text{Hypotenuse} \right)}^{2}}={{\left( \text{side }_1 \right)}^{2}}+{{\left( \text{side}_2 \right)}^{2}}$. Using the Pythagoras theorem on $\Delta \text{PQR}$, we get the following equation,
$\text{Q}{{\text{R}}^{2}}=\text{P}{{\text{Q}}^{2}}+\text{P}{{\text{R}}^{2}}....(i)$
Now, we know that $\text{PM}\bot \text{QR}$. Let us consider $\Delta \text{PMQ}$ with the right angle at vertex $\text{M}$. Using the Pythagoras theorem for this triangle, we get
$\text{P}{{\text{Q}}^{2}}=\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}$.
Next, we will consider $\Delta \text{PMR}$ with the right angle at vertex $\text{M}$. In this triangle, we will use the Pythagoras theorem again, as follows,
$\text{P}{{\text{R}}^{2}}=\text{P}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}}$.
Now, substituting the values of $\text{P}{{\text{Q}}^{2}}$ and $\text{P}{{\text{R}}^{2}}$ in equation $(i)$, we get
$\begin{align}
&\text{Q}{{\text{R}}^{2}}=\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}+\text{P}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}} \\
& =2\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}}
\end{align}$
Now, from the above diagram, we can see that $\text{QR = QM + MR}$. Substituting this value in the above equation, we get
${{\left(\text{QM+MR}\right)}^{2}}=2\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}}$
We will expand the left hand side of the above equation using the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$. So, we have the following equation,
$\text{Q}{{\text{M}}^{2}}\text{+M}{{\text{R}}^{2}}+2\text{QM}\cdot \text{MR}=2\text{P}{{\text{M}}^{2}}+\text{Q}{{\text{M}}^{2}}+\text{M}{{\text{R}}^{2}}$
Simplifying the above equation, we get
$\begin{align}
& 2\text{QM}\cdot \text{MR}=2\text{P}{{\text{M}}^{2}} \\
& \therefore \text{QM}\cdot \text{MR}=\text{P}{{\text{M}}^{2}} \\
\end{align}$
Hence, proved.
Note: It is useful to draw a rough diagram for such types of questions. Looking at the diagram, it becomes clear which triangles should be used to get the required result. When we have a right-angled triangle, it is natural to consider the use of the Pythagoras theorem. It is better to write the names of all sides explicitly so that minor mistakes in calculations can be avoided.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE