Answer
Verified
477.6k+ views
Hint: Find the number of squares from 2 to 100 both numbers inclusive. This can be done by considering numbers from 2 to 10 and taking their squares. Find the total number from 2 to 100. Probability is obtained as the total number of squares by total possible outcome.
Complete step by step solution:
We need to find the probability of choosing a square number between 2 and 100. A square number is a perfect square i.e. integer that is the square of an integer. It is the product of some integer with itself. Let us first look into the square number starting from 2.
\[\begin{align}
& {{2}^{2}}=4 \\
& {{3}^{2}}=9 \\
& {{4}^{2}}=16 \\
& {{5}^{2}}=25 \\
& {{6}^{2}}=36 \\
& {{7}^{2}}=49 \\
& {{8}^{2}}=64 \\
& {{9}^{2}}=81 \\
& {{10}^{2}}=100 \\
\end{align}\]
Now we got 9 square numbers, we can include 2 and 100 in this as it is mentioned that both numbers are inclusive. After \[{{10}^{2}}\] the number is greater than 100. Thus they cannot be included in finding the probability. So here we have the total number of square numbers from 2 to 100, both inclusive as 9.
Now we know that the total number of numbers from 2 to 100 = 99.
Hence required probability = Total number of favorable outcomes / Total number of outcomes.
Probability of choosing a square number between 2 and 100 = Total number of square number between 2 and 100 / Total numbers from 2 to 100
= \[\dfrac{9}{99}=\dfrac{1}{11}\]
Thus we got the required probability as \[\dfrac{1}{11}\].
Thus option (a) is the correct answer.
Note: The question may confuse you as it is first to find probability between 2 and 100 and the mentioned both numbers inclusive. Thus don’t forget to take 2 and 100 while calculating total numbers between 2 and 100. You might get the answer wrong if you don’t take it correctly.
Complete step by step solution:
We need to find the probability of choosing a square number between 2 and 100. A square number is a perfect square i.e. integer that is the square of an integer. It is the product of some integer with itself. Let us first look into the square number starting from 2.
\[\begin{align}
& {{2}^{2}}=4 \\
& {{3}^{2}}=9 \\
& {{4}^{2}}=16 \\
& {{5}^{2}}=25 \\
& {{6}^{2}}=36 \\
& {{7}^{2}}=49 \\
& {{8}^{2}}=64 \\
& {{9}^{2}}=81 \\
& {{10}^{2}}=100 \\
\end{align}\]
Now we got 9 square numbers, we can include 2 and 100 in this as it is mentioned that both numbers are inclusive. After \[{{10}^{2}}\] the number is greater than 100. Thus they cannot be included in finding the probability. So here we have the total number of square numbers from 2 to 100, both inclusive as 9.
Now we know that the total number of numbers from 2 to 100 = 99.
Hence required probability = Total number of favorable outcomes / Total number of outcomes.
Probability of choosing a square number between 2 and 100 = Total number of square number between 2 and 100 / Total numbers from 2 to 100
= \[\dfrac{9}{99}=\dfrac{1}{11}\]
Thus we got the required probability as \[\dfrac{1}{11}\].
Thus option (a) is the correct answer.
Note: The question may confuse you as it is first to find probability between 2 and 100 and the mentioned both numbers inclusive. Thus don’t forget to take 2 and 100 while calculating total numbers between 2 and 100. You might get the answer wrong if you don’t take it correctly.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
Which is the longest day and shortest night in the class 11 sst CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE