Answer
Verified
489k+ views
Hint: To find the probability involving the case when an unbiased die is thrown, we first find the total number of outcomes possible. Then we find the desired number of outcomes for the particular question and then use the definition of probability to find the answer.
Complete step-by-step solution:
First, we start with the meaning of the term probability. Probability helps us to find out the likelihood of an event to occur. For example, if in a weather forecast, it is said that there is 80% chance for the day to be rainy, this means that the probability for it to rain on that particular day is 0.8 (basically, we convert percentage to decimal by dividing by 100). Another example is that of a coin toss. The total number of outcomes in this case is 2 (heads and tails). To get the desired outcome (say heads), the probability is 0.5 since it is equally likely to be heads or tails.
Now, coming to the above question. First, we find out the total number of outcomes. The number of outcomes would be six (that is- 1,2,3,4,5 and 6). Now, the desired number of outcomes are the numbers less than 5. These include – 1,2,3 and 4 (that is, there are a total four outcomes). Now, to find probability,
Probability = $\dfrac{\text{Desired number of outcomes}}{\text{Total number of outcomes}}$
Probability = $\dfrac{4}{6}$
Probability = $\dfrac{2}{3}$
Hence, the required probability is $\dfrac{2}{3}$.
Note: An alternative to solve the problem is to use the following equation below-
Probability (number greater than equal to 5) + Probability (number less than 5) = 1 -- (1)
Now, we need to find the probability for the number to be less than 5. Thus, we can calculate the probability of the number greater than equal to 5. In this case, also the number of outcomes is 6. The desired number of outcomes is 2 (that is 5,6). Thus, calculating the probability is-
Probability = $\dfrac{\text{Desired number of outcomes}}{\text{Total number of outcomes}}$
Probability = $\dfrac{2}{6}$
Probability = $\dfrac{1}{3}$
Now, putting in expression (1), we get,
$\dfrac{1}{3}$ + Probability (number less than 5) = 1
Probability (number less than 5) = $\dfrac{2}{3}$
Hence, we can get back the same required probability by this method also.
Complete step-by-step solution:
First, we start with the meaning of the term probability. Probability helps us to find out the likelihood of an event to occur. For example, if in a weather forecast, it is said that there is 80% chance for the day to be rainy, this means that the probability for it to rain on that particular day is 0.8 (basically, we convert percentage to decimal by dividing by 100). Another example is that of a coin toss. The total number of outcomes in this case is 2 (heads and tails). To get the desired outcome (say heads), the probability is 0.5 since it is equally likely to be heads or tails.
Now, coming to the above question. First, we find out the total number of outcomes. The number of outcomes would be six (that is- 1,2,3,4,5 and 6). Now, the desired number of outcomes are the numbers less than 5. These include – 1,2,3 and 4 (that is, there are a total four outcomes). Now, to find probability,
Probability = $\dfrac{\text{Desired number of outcomes}}{\text{Total number of outcomes}}$
Probability = $\dfrac{4}{6}$
Probability = $\dfrac{2}{3}$
Hence, the required probability is $\dfrac{2}{3}$.
Note: An alternative to solve the problem is to use the following equation below-
Probability (number greater than equal to 5) + Probability (number less than 5) = 1 -- (1)
Now, we need to find the probability for the number to be less than 5. Thus, we can calculate the probability of the number greater than equal to 5. In this case, also the number of outcomes is 6. The desired number of outcomes is 2 (that is 5,6). Thus, calculating the probability is-
Probability = $\dfrac{\text{Desired number of outcomes}}{\text{Total number of outcomes}}$
Probability = $\dfrac{2}{6}$
Probability = $\dfrac{1}{3}$
Now, putting in expression (1), we get,
$\dfrac{1}{3}$ + Probability (number less than 5) = 1
Probability (number less than 5) = $\dfrac{2}{3}$
Hence, we can get back the same required probability by this method also.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE