Answer
Verified
467.1k+ views
Hint: For solving this question we will assume that \[AB = \overrightarrow c ,BC = \overrightarrow a ,AC = \overrightarrow b \] and use the following known information:
For a triangle ABC ,
\[\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} = 0\],
Then just solve the question by using the cross product/ vector product of vectors method to get the desired answer.
The magnitude of cross product of two vectors is equal to the product of magnitude of both the vectors and the sine of angle between them.
\[\left| {\overrightarrow x \times \overrightarrow y } \right| = \left| {\overrightarrow x } \right|.\left| {\overrightarrow y } \right|.\sin \theta \]
Where \[\theta \] is the angle between vectors x and y
Complete step-by-step answer:
Let us assume \[AB = \overrightarrow c ,BC = \overrightarrow a ,AC = \overrightarrow b \]
Now as we know that for a triangle
\[\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} = 0\]
Since we know that:
\[\overrightarrow {CA} = - \overrightarrow {AC} \]
Hence putting the value we get:-
\[\overrightarrow {CA} = - \overrightarrow b \]
Hence putting the respective values we get:-
\[\vec a - \vec b + \vec c = 0\]
Using cross product of vectors method, multiply by $\vec a$ both side
\[\vec a \times (\vec a - \vec b + \vec c) = a \times \vec 0\]
Now as we know that:
\[\overrightarrow x \times \left( {\overrightarrow y + \overrightarrow z } \right) = \overrightarrow x \times \overrightarrow y + \overrightarrow x \times \overrightarrow z \]
Applying this formula we get:-
\[(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} \times \vec a) - (\vec a \times \vec b) + (\vec a \times \vec c) = \vec 0\]
We know that the cross product of same vectors is zero
Therefore,
\[(\vec a \times \vec a) = 0\]
Putting this value we get:-
\[
0 - (\vec a \times \vec b) + (\vec a \times \vec c) = \vec 0 \\
(\vec a \times \vec b) = (\vec a \times \vec c) \\
\]
Now as we know that the magnitude of cross product of two vectors is equal to the product of magnitude of both the vectors and the sine of angle between them.
\[\left| {\overrightarrow x \times \overrightarrow y } \right| = \left| {\overrightarrow x } \right|.\left| {\overrightarrow y } \right|.\sin \theta \]
Where \[\theta \] is the angle between vectors x and y.
Hence applying this formula for both LHS and RHS we get:-
Since it is given that the angle between vectors a and b is \[\pi - C\] and angle between the vectors a and c is \[\pi - B\]
Therefore substituting the values in above formula we get:-
\[
\left| a \right|\left| b \right|\sin (\pi - C) = \left| c \right|\left| a \right|\sin (\pi - B) \\
\Rightarrow ab\sin (\pi - C) = ca\sin (\pi - B) \\
\]
Now since we know that
\[\sin (\pi - \theta ) = \sin \theta \]
Hence we get:-
$b\sin C = c\sin B$
\[ \Rightarrow \dfrac{{\sin C}}{c} = \dfrac{{\sin B}}{b}\]……………….(1)
Similarly, we can prove that
$\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b}$………………..(2)
Hence from equations 1 and 2 we get:-
$\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}$
Hence proved
$\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}$
Note: In this type of question students should first analyse the diagram instead of solving the equations. All the vectors should be taken according to their directions.
Also while calculating the magnitude of the vector product, students should take the correct angle between the two vectors.
For a triangle ABC ,
\[\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} = 0\],
Then just solve the question by using the cross product/ vector product of vectors method to get the desired answer.
The magnitude of cross product of two vectors is equal to the product of magnitude of both the vectors and the sine of angle between them.
\[\left| {\overrightarrow x \times \overrightarrow y } \right| = \left| {\overrightarrow x } \right|.\left| {\overrightarrow y } \right|.\sin \theta \]
Where \[\theta \] is the angle between vectors x and y
Complete step-by-step answer:
Let us assume \[AB = \overrightarrow c ,BC = \overrightarrow a ,AC = \overrightarrow b \]
Now as we know that for a triangle
\[\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} = 0\]
Since we know that:
\[\overrightarrow {CA} = - \overrightarrow {AC} \]
Hence putting the value we get:-
\[\overrightarrow {CA} = - \overrightarrow b \]
Hence putting the respective values we get:-
\[\vec a - \vec b + \vec c = 0\]
Using cross product of vectors method, multiply by $\vec a$ both side
\[\vec a \times (\vec a - \vec b + \vec c) = a \times \vec 0\]
Now as we know that:
\[\overrightarrow x \times \left( {\overrightarrow y + \overrightarrow z } \right) = \overrightarrow x \times \overrightarrow y + \overrightarrow x \times \overrightarrow z \]
Applying this formula we get:-
\[(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} \times \vec a) - (\vec a \times \vec b) + (\vec a \times \vec c) = \vec 0\]
We know that the cross product of same vectors is zero
Therefore,
\[(\vec a \times \vec a) = 0\]
Putting this value we get:-
\[
0 - (\vec a \times \vec b) + (\vec a \times \vec c) = \vec 0 \\
(\vec a \times \vec b) = (\vec a \times \vec c) \\
\]
Now as we know that the magnitude of cross product of two vectors is equal to the product of magnitude of both the vectors and the sine of angle between them.
\[\left| {\overrightarrow x \times \overrightarrow y } \right| = \left| {\overrightarrow x } \right|.\left| {\overrightarrow y } \right|.\sin \theta \]
Where \[\theta \] is the angle between vectors x and y.
Hence applying this formula for both LHS and RHS we get:-
Since it is given that the angle between vectors a and b is \[\pi - C\] and angle between the vectors a and c is \[\pi - B\]
Therefore substituting the values in above formula we get:-
\[
\left| a \right|\left| b \right|\sin (\pi - C) = \left| c \right|\left| a \right|\sin (\pi - B) \\
\Rightarrow ab\sin (\pi - C) = ca\sin (\pi - B) \\
\]
Now since we know that
\[\sin (\pi - \theta ) = \sin \theta \]
Hence we get:-
$b\sin C = c\sin B$
\[ \Rightarrow \dfrac{{\sin C}}{c} = \dfrac{{\sin B}}{b}\]……………….(1)
Similarly, we can prove that
$\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b}$………………..(2)
Hence from equations 1 and 2 we get:-
$\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}$
Hence proved
$\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}$
Note: In this type of question students should first analyse the diagram instead of solving the equations. All the vectors should be taken according to their directions.
Also while calculating the magnitude of the vector product, students should take the correct angle between the two vectors.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
Which is the longest day and shortest night in the class 11 sst CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE