Prove $\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{3 - \sqrt 5 }}{8}$ is true or false
A.True
B.False
Answer
Verified
466.5k+ views
Hint: In this we use multiple theorem where $2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B)$ and for simplifying we will use the value of $\cos {60^ \circ } = \dfrac{1}{2}$and $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$
Complete step-by-step answer:
Given $\cos {48^ \circ } \cdot \cos {12^ \circ }$
We know that $2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B)$ substituting $A = {48^ \circ },B = {12^ \circ }$in formula we get
$2\cos {48^ \circ } \cdot \cos {12^ \circ } = \cos \left( {48 + 12} \right) + \cos \left( {48 - 12} \right)$
So, $\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\cos {{60}^ \circ } + \cos {{36}^ \circ }}}{2}$
Substituting $\cos {60^ \circ } = \dfrac{1}{2}$and $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$ ,we get,
$ \Rightarrow \dfrac{{\dfrac{1}{2} + \dfrac{{\sqrt 5 + 1}}{4}}}{2}$
On simplifying we get
$\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\sqrt 5 + 3}}{8}$
So, we can say that the given statement is false
Answer is option (B)
Note: some important multiple theorem
$
2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B) \\
2\sin A\sin B = cos\left( {A - B} \right) - \cos \left( {A + B} \right) \\
2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right) \\
2\sin B\cos A = \sin \left( {A + B} \right) - \sin \left( {A - B} \right) \\
$
and must not confused in value of $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$
Complete step-by-step answer:
Given $\cos {48^ \circ } \cdot \cos {12^ \circ }$
We know that $2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B)$ substituting $A = {48^ \circ },B = {12^ \circ }$in formula we get
$2\cos {48^ \circ } \cdot \cos {12^ \circ } = \cos \left( {48 + 12} \right) + \cos \left( {48 - 12} \right)$
So, $\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\cos {{60}^ \circ } + \cos {{36}^ \circ }}}{2}$
Substituting $\cos {60^ \circ } = \dfrac{1}{2}$and $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$ ,we get,
$ \Rightarrow \dfrac{{\dfrac{1}{2} + \dfrac{{\sqrt 5 + 1}}{4}}}{2}$
On simplifying we get
$\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\sqrt 5 + 3}}{8}$
So, we can say that the given statement is false
Answer is option (B)
Note: some important multiple theorem
$
2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B) \\
2\sin A\sin B = cos\left( {A - B} \right) - \cos \left( {A + B} \right) \\
2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right) \\
2\sin B\cos A = \sin \left( {A + B} \right) - \sin \left( {A - B} \right) \\
$
and must not confused in value of $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE