Answer
Verified
429.6k+ views
Hint: This question is from the topic of trigonometric identities. In this we need to prove $\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $. To prove this we will use basic trigonometric identities and trigonometric functions. To prove this we start with L.H.S of the equation and write it in the form of $\sin \theta $ and $\cos \theta $.
Complete step by step solution:
Let us try to solve this question in which we are asked to prove
that $\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $.
To prove this we will first use this relations $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos
\theta }}{{\sin \theta }}$. We simplify this equation to get the required result $1 - {\sec ^2}\theta$.
Let’s try to prove.
To Prove: $\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $
Proof: We have,
$\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $
$(1)$
Now by using the identities such as $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta
= \dfrac{{\cos \theta }}{{\sin \theta }}$. Putting the values of these identities in equation$(1)$, we get
$\dfrac{{1 - {{\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)}^2}}}{{1 - {{\left(
{\dfrac{{\cos \theta }}{{\sin \theta }}} \right)}^2}}} = 1 - {\sec ^2}\theta $ $(2)$
$\dfrac{{1 - \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}}}{{1 - \dfrac{{{{\cos
}^2}\theta }}{{{{\sin }^2}\theta }}}} = 1 - {\sec ^2}\theta $ $(3)$
Now, by performing fraction subtraction in the L.H.S of equation $(3)$ numerator and denominator both, we get
$\dfrac{{\dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{{{\cos }^2}\theta
}}}}{{\dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{{{\sin }^2}\theta }}}} = 1 - {\sec ^2}\theta $
$(4)$
Now using this property $\dfrac{{\dfrac{a}{b}}}{{\dfrac{c}{d}}} = \dfrac{{a \cdot d}}{{b \cdot c}}$in the equation $(4)$, we get
$\dfrac{{{{\sin }^2}\theta ({{\cos }^2}\theta - {{\sin }^2}\theta )}}{{{{\cos
}^2}\theta ({{\sin }^2}\theta - {{\cos }^2}\theta )}} = 1 - {\sec ^2}\theta $ $(5)$
Now by using the result $\dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{{{\sin }^2}\theta - {{\cos }^2}\theta }} = - 1$ in the equation $(5)$, we get
$ - \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} = 1 - {\sec ^2}\theta $
$(6)$
As we already know that $\dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} = {\tan ^2}\theta $ in the equation $(6)$, we get
$ - {\tan ^2}\theta = 1 - {\sec ^2}\theta $ $(7)$
Now by using the trigonometric identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$ in the equation $(7)$, we get
We write the above trigonometric identity as $ - {\tan ^2}\theta = 1 - {\sec ^2}\theta $. So we can write equation $(7)$ as,
$1 - {\sec ^2}\theta = 1 - {\sec ^2}\theta $
Since we have shown L.H.S of the equation $\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $ equal to the R.H.S.
Hence proved.
Note: While solving these types of questions in which we have to prove trigonometric equations, we will start with the L.H.S of equation to derive R.H.S from it. To prove this question we only requires knowledge of basic trigonometric identities such as ${\sin ^2}x + {\cos ^2}x = 1$, ${\sec ^2}x - {\tan ^2}x = 1$
Complete step by step solution:
Let us try to solve this question in which we are asked to prove
that $\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $.
To prove this we will first use this relations $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos
\theta }}{{\sin \theta }}$. We simplify this equation to get the required result $1 - {\sec ^2}\theta$.
Let’s try to prove.
To Prove: $\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $
Proof: We have,
$\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $
$(1)$
Now by using the identities such as $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta
= \dfrac{{\cos \theta }}{{\sin \theta }}$. Putting the values of these identities in equation$(1)$, we get
$\dfrac{{1 - {{\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)}^2}}}{{1 - {{\left(
{\dfrac{{\cos \theta }}{{\sin \theta }}} \right)}^2}}} = 1 - {\sec ^2}\theta $ $(2)$
$\dfrac{{1 - \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}}}{{1 - \dfrac{{{{\cos
}^2}\theta }}{{{{\sin }^2}\theta }}}} = 1 - {\sec ^2}\theta $ $(3)$
Now, by performing fraction subtraction in the L.H.S of equation $(3)$ numerator and denominator both, we get
$\dfrac{{\dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{{{\cos }^2}\theta
}}}}{{\dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{{{\sin }^2}\theta }}}} = 1 - {\sec ^2}\theta $
$(4)$
Now using this property $\dfrac{{\dfrac{a}{b}}}{{\dfrac{c}{d}}} = \dfrac{{a \cdot d}}{{b \cdot c}}$in the equation $(4)$, we get
$\dfrac{{{{\sin }^2}\theta ({{\cos }^2}\theta - {{\sin }^2}\theta )}}{{{{\cos
}^2}\theta ({{\sin }^2}\theta - {{\cos }^2}\theta )}} = 1 - {\sec ^2}\theta $ $(5)$
Now by using the result $\dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{{{\sin }^2}\theta - {{\cos }^2}\theta }} = - 1$ in the equation $(5)$, we get
$ - \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} = 1 - {\sec ^2}\theta $
$(6)$
As we already know that $\dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} = {\tan ^2}\theta $ in the equation $(6)$, we get
$ - {\tan ^2}\theta = 1 - {\sec ^2}\theta $ $(7)$
Now by using the trigonometric identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$ in the equation $(7)$, we get
We write the above trigonometric identity as $ - {\tan ^2}\theta = 1 - {\sec ^2}\theta $. So we can write equation $(7)$ as,
$1 - {\sec ^2}\theta = 1 - {\sec ^2}\theta $
Since we have shown L.H.S of the equation $\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $ equal to the R.H.S.
Hence proved.
Note: While solving these types of questions in which we have to prove trigonometric equations, we will start with the L.H.S of equation to derive R.H.S from it. To prove this question we only requires knowledge of basic trigonometric identities such as ${\sin ^2}x + {\cos ^2}x = 1$, ${\sec ^2}x - {\tan ^2}x = 1$
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE