Answer
Verified
498.6k+ views
Hint: We have to prove $\sin 3x{{\sin }^{3}}x+\cos 3x{{\cos }^{3}}x={{\cos }^{3}}2x$. For that we have to take LHS. So take LHS and use different trigonometric identities. Also, Use different algebraic identities. Try it and you will get the answer.
Complete step-by-step answer:
The trigonometric functions (also called circular functions, angle functions, or trigonometric functions) are real functions that relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena, through Fourier analysis.
The most widely used trigonometric functions are the sine, the cosine, and the tangent. Their reciprocals are respectively the cosecant, the secant, and the cotangent, which are less used in modern mathematics.
The cosine function, along with sine and tangent, is one of the three most common trigonometric functions. In any right triangle, the cosine of an angle is the length of the adjacent side (A) divided by the length of the hypotenuse (H). In a formula, it is written simply as '$\cos $'. $\cos $ function (or cosine function) in a triangle is the ratio of the adjacent side to that of the hypotenuse. The cosine function is one of the three main primary trigonometric functions and it is itself the complement of sine (co + sine).
The cosine graph or the cos graph is an up-down graph just like the sine graph. The only difference between the sine graph and the cos graph is that the sine graph starts from $0$ while the cos graph starts from $90{}^\circ $ (or $\dfrac{\pi }{2}$).
Now we have to prove LHS$=$RHS.
So now taking LHS$=\sin 3x{{\sin }^{3}}x+\cos 3x{{\cos }^{3}}x$, we know that,
$\begin{align}
& \sin 3x=3\sin x-4{{\sin }^{3}}x=\sin x(3-4{{\sin }^{2}}x) \\
& \cos 3x=4{{\cos }^{3}}x-3\cos x=\cos x(4{{\cos }^{2}}x-3) \\
\end{align}$
\[\begin{align}
& =\sin x(3-4{{\sin }^{2}}x){{\sin }^{3}}x+\cos x(4{{\cos }^{2}}x-3){{\cos }^{3}}x \\
& =(3-4{{\sin }^{2}}x){{\sin }^{4}}x+(4{{\cos }^{2}}x-3){{\cos }^{4}}x \\
& =3{{\sin }^{4}}x-4{{\sin }^{6}}x+4{{\cos }^{6}}x-3{{\cos }^{4}}x \\
& =3{{\sin }^{4}}x-3{{\cos }^{4}}x-4{{\sin }^{6}}x+4{{\cos }^{6}}x \\
& =3({{\sin }^{4}}x-{{\cos }^{4}}x)-4({{\sin }^{6}}x-{{\cos }^{6}}x) \\
\end{align}\]
Now we know that,
${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$and ${{a}^{3}}-{{b}^{3}}=(a-b)({{a}^{2}}+ab+{{b}^{2}})$
Also, \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
So applying above identity we get,
\[\begin{align}
& =3({{\sin }^{2}}x-{{\cos }^{2}}x)({{\sin }^{2}}x+{{\cos }^{2}}x)-4({{\sin }^{2}}x-{{\cos }^{2}}x)({{\sin }^{4}}x+{{\cos }^{4}}x+{{\sin }^{2}}x{{\cos }^{2}}x) \\
& =3({{\sin }^{2}}x-{{\cos }^{2}}x)-4({{\sin }^{2}}x-{{\cos }^{2}}x)({{\sin }^{4}}x+{{\cos }^{4}}x+{{\sin }^{2}}x{{\cos }^{2}}x) \\
& =3({{\sin }^{2}}x-{{\cos }^{2}}x)-4({{\sin }^{2}}x-{{\cos }^{2}}x)({{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{^{2}}}-2{{\sin }^{2}}x{{\cos }^{2}}x+{{\sin }^{2}}x{{\cos }^{2}}x) \\
& =3({{\sin }^{2}}x-{{\cos }^{2}}x)-4({{\sin }^{2}}x-{{\cos }^{2}}x)(1-{{\sin }^{2}}x{{\cos }^{2}}x) \\
\end{align}\]
\[\begin{align}
& =-3(-{{\sin }^{2}}x+{{\cos }^{2}}x)+4({{\cos }^{2}}x-{{\sin }^{2}}x)(1-{{\sin }^{2}}x{{\cos }^{2}}x) \\
& =4({{\cos }^{2}}x-{{\sin }^{2}}x)(1-{{\sin }^{2}}x{{\cos }^{2}}x)-3({{\cos }^{2}}x-{{\sin }^{2}}x) \\
\end{align}\]
Now taking \[{{\cos }^{2}}x-{{\sin }^{2}}x\]common we get,
Also, \[({{\cos }^{2}}x-{{\sin }^{2}}x)=\cos 2x\]
\[\begin{align}
& =({{\cos }^{2}}x-{{\sin }^{2}}x)\left( 4(1-{{\sin }^{2}}x{{\cos }^{2}}x)-3 \right) \\
& =\cos 2x\left( 4-4{{\sin }^{2}}x{{\cos }^{2}}x-3 \right) \\
& =\cos 2x\left( 4-4(1-{{\cos }^{2}}x){{\cos }^{2}}x-3 \right) \\
& =\cos 2x\left( 1-4{{\cos }^{2}}x+4{{\cos }^{4}}x \right) \\
& =\cos 2x\left( 1-2\times 2{{\cos }^{2}}x+{{(2{{\cos }^{2}}x)}^{2}} \right) \\
& =\cos 2x{{\left( 2{{\cos }^{2}}x-1 \right)}^{2}} \\
\end{align}\]
We know that\[2{{\cos }^{2}}x-1=\cos 2x\],
\[\begin{align}
& =\cos 2x{{\left( \cos 2x \right)}^{2}} \\
& ={{\cos }^{3}}2x \\
\end{align}\]
\[={{\cos }^{3}}2x=\]RHS
So $\sin 3x{{\sin }^{3}}x+\cos 3x{{\cos }^{3}}x={{\cos }^{3}}2x$ is proved.
Hence proved.
Note: Read the question in a careful manner. Also, make sure that you know all the identities. You should be familiar with the trigonometric formulae because mostly they are used for conversion. Also, there might be silly mistakes, so kindly avoid the silly mistake.
Complete step-by-step answer:
The trigonometric functions (also called circular functions, angle functions, or trigonometric functions) are real functions that relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena, through Fourier analysis.
The most widely used trigonometric functions are the sine, the cosine, and the tangent. Their reciprocals are respectively the cosecant, the secant, and the cotangent, which are less used in modern mathematics.
The cosine function, along with sine and tangent, is one of the three most common trigonometric functions. In any right triangle, the cosine of an angle is the length of the adjacent side (A) divided by the length of the hypotenuse (H). In a formula, it is written simply as '$\cos $'. $\cos $ function (or cosine function) in a triangle is the ratio of the adjacent side to that of the hypotenuse. The cosine function is one of the three main primary trigonometric functions and it is itself the complement of sine (co + sine).
The cosine graph or the cos graph is an up-down graph just like the sine graph. The only difference between the sine graph and the cos graph is that the sine graph starts from $0$ while the cos graph starts from $90{}^\circ $ (or $\dfrac{\pi }{2}$).
Now we have to prove LHS$=$RHS.
So now taking LHS$=\sin 3x{{\sin }^{3}}x+\cos 3x{{\cos }^{3}}x$, we know that,
$\begin{align}
& \sin 3x=3\sin x-4{{\sin }^{3}}x=\sin x(3-4{{\sin }^{2}}x) \\
& \cos 3x=4{{\cos }^{3}}x-3\cos x=\cos x(4{{\cos }^{2}}x-3) \\
\end{align}$
\[\begin{align}
& =\sin x(3-4{{\sin }^{2}}x){{\sin }^{3}}x+\cos x(4{{\cos }^{2}}x-3){{\cos }^{3}}x \\
& =(3-4{{\sin }^{2}}x){{\sin }^{4}}x+(4{{\cos }^{2}}x-3){{\cos }^{4}}x \\
& =3{{\sin }^{4}}x-4{{\sin }^{6}}x+4{{\cos }^{6}}x-3{{\cos }^{4}}x \\
& =3{{\sin }^{4}}x-3{{\cos }^{4}}x-4{{\sin }^{6}}x+4{{\cos }^{6}}x \\
& =3({{\sin }^{4}}x-{{\cos }^{4}}x)-4({{\sin }^{6}}x-{{\cos }^{6}}x) \\
\end{align}\]
Now we know that,
${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$and ${{a}^{3}}-{{b}^{3}}=(a-b)({{a}^{2}}+ab+{{b}^{2}})$
Also, \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]
So applying above identity we get,
\[\begin{align}
& =3({{\sin }^{2}}x-{{\cos }^{2}}x)({{\sin }^{2}}x+{{\cos }^{2}}x)-4({{\sin }^{2}}x-{{\cos }^{2}}x)({{\sin }^{4}}x+{{\cos }^{4}}x+{{\sin }^{2}}x{{\cos }^{2}}x) \\
& =3({{\sin }^{2}}x-{{\cos }^{2}}x)-4({{\sin }^{2}}x-{{\cos }^{2}}x)({{\sin }^{4}}x+{{\cos }^{4}}x+{{\sin }^{2}}x{{\cos }^{2}}x) \\
& =3({{\sin }^{2}}x-{{\cos }^{2}}x)-4({{\sin }^{2}}x-{{\cos }^{2}}x)({{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{^{2}}}-2{{\sin }^{2}}x{{\cos }^{2}}x+{{\sin }^{2}}x{{\cos }^{2}}x) \\
& =3({{\sin }^{2}}x-{{\cos }^{2}}x)-4({{\sin }^{2}}x-{{\cos }^{2}}x)(1-{{\sin }^{2}}x{{\cos }^{2}}x) \\
\end{align}\]
\[\begin{align}
& =-3(-{{\sin }^{2}}x+{{\cos }^{2}}x)+4({{\cos }^{2}}x-{{\sin }^{2}}x)(1-{{\sin }^{2}}x{{\cos }^{2}}x) \\
& =4({{\cos }^{2}}x-{{\sin }^{2}}x)(1-{{\sin }^{2}}x{{\cos }^{2}}x)-3({{\cos }^{2}}x-{{\sin }^{2}}x) \\
\end{align}\]
Now taking \[{{\cos }^{2}}x-{{\sin }^{2}}x\]common we get,
Also, \[({{\cos }^{2}}x-{{\sin }^{2}}x)=\cos 2x\]
\[\begin{align}
& =({{\cos }^{2}}x-{{\sin }^{2}}x)\left( 4(1-{{\sin }^{2}}x{{\cos }^{2}}x)-3 \right) \\
& =\cos 2x\left( 4-4{{\sin }^{2}}x{{\cos }^{2}}x-3 \right) \\
& =\cos 2x\left( 4-4(1-{{\cos }^{2}}x){{\cos }^{2}}x-3 \right) \\
& =\cos 2x\left( 1-4{{\cos }^{2}}x+4{{\cos }^{4}}x \right) \\
& =\cos 2x\left( 1-2\times 2{{\cos }^{2}}x+{{(2{{\cos }^{2}}x)}^{2}} \right) \\
& =\cos 2x{{\left( 2{{\cos }^{2}}x-1 \right)}^{2}} \\
\end{align}\]
We know that\[2{{\cos }^{2}}x-1=\cos 2x\],
\[\begin{align}
& =\cos 2x{{\left( \cos 2x \right)}^{2}} \\
& ={{\cos }^{3}}2x \\
\end{align}\]
\[={{\cos }^{3}}2x=\]RHS
So $\sin 3x{{\sin }^{3}}x+\cos 3x{{\cos }^{3}}x={{\cos }^{3}}2x$ is proved.
Hence proved.
Note: Read the question in a careful manner. Also, make sure that you know all the identities. You should be familiar with the trigonometric formulae because mostly they are used for conversion. Also, there might be silly mistakes, so kindly avoid the silly mistake.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE