
Prove that: $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}$.
Answer
519.9k+ views
Hint: As we can see that the above question is related to trigonometry as tangent i.e. $\tan $ is a trigonometric ratio. We will use the trigonometric identities to solve this question. We know the formula of $\tan 2\theta $, i.e. $\tan 2\theta = \left( {\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}} \right)$. We will use the value of ${\tan ^{ - 1}}x$ and then with the help of the formula we will solve it.
Complete step-by-step answer:
Let us assume that ${\tan ^{ - 1}}x = \theta $.
So by putting this in the value we have $x = \tan \theta $.
Now we know the trigonometric identity: $\tan 2\theta = \left( {\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}} \right)$. In this identity we can transfer the tan from the left hand side of the right hand side: we can write it as $2\theta = {\tan ^{ - 1}}\left( {\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}} \right)$.
Now we can substitute the value $\tan \theta = x$ in the identity and it gives us $2\theta = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$.
Also we have assumed ${\tan ^{ - 1}}x = \theta $, so by putting this back in place of $\theta $, we can write $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$.
Hence it is proved that : $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}$.
Note: Before solving this kind of question we should have the full knowledge of the trigonometric identities and their formulas. There is an alternate way to solve this question with the help of another formula i.e. ${\tan ^{ - 1}}a + {\tan ^{ - 1}}b = \arctan \left( {\dfrac{{a + b}}{{1 - ab}}} \right)$. We can assume that the value of $a = b = x$, so by putting this in the formula we also get the answer.
Complete step-by-step answer:
Let us assume that ${\tan ^{ - 1}}x = \theta $.
So by putting this in the value we have $x = \tan \theta $.
Now we know the trigonometric identity: $\tan 2\theta = \left( {\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}} \right)$. In this identity we can transfer the tan from the left hand side of the right hand side: we can write it as $2\theta = {\tan ^{ - 1}}\left( {\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}} \right)$.
Now we can substitute the value $\tan \theta = x$ in the identity and it gives us $2\theta = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$.
Also we have assumed ${\tan ^{ - 1}}x = \theta $, so by putting this back in place of $\theta $, we can write $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$.
Hence it is proved that : $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}$.
Note: Before solving this kind of question we should have the full knowledge of the trigonometric identities and their formulas. There is an alternate way to solve this question with the help of another formula i.e. ${\tan ^{ - 1}}a + {\tan ^{ - 1}}b = \arctan \left( {\dfrac{{a + b}}{{1 - ab}}} \right)$. We can assume that the value of $a = b = x$, so by putting this in the formula we also get the answer.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

