Answer
Verified
397.8k+ views
Hint: As we can see that the above question is related to trigonometry as tangent i.e. $\tan $ is a trigonometric ratio. We will use the trigonometric identities to solve this question. We know the formula of $\tan 2\theta $, i.e. $\tan 2\theta = \left( {\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}} \right)$. We will use the value of ${\tan ^{ - 1}}x$ and then with the help of the formula we will solve it.
Complete step-by-step answer:
Let us assume that ${\tan ^{ - 1}}x = \theta $.
So by putting this in the value we have $x = \tan \theta $.
Now we know the trigonometric identity: $\tan 2\theta = \left( {\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}} \right)$. In this identity we can transfer the tan from the left hand side of the right hand side: we can write it as $2\theta = {\tan ^{ - 1}}\left( {\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}} \right)$.
Now we can substitute the value $\tan \theta = x$ in the identity and it gives us $2\theta = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$.
Also we have assumed ${\tan ^{ - 1}}x = \theta $, so by putting this back in place of $\theta $, we can write $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$.
Hence it is proved that : $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}$.
Note: Before solving this kind of question we should have the full knowledge of the trigonometric identities and their formulas. There is an alternate way to solve this question with the help of another formula i.e. ${\tan ^{ - 1}}a + {\tan ^{ - 1}}b = \arctan \left( {\dfrac{{a + b}}{{1 - ab}}} \right)$. We can assume that the value of $a = b = x$, so by putting this in the formula we also get the answer.
Complete step-by-step answer:
Let us assume that ${\tan ^{ - 1}}x = \theta $.
So by putting this in the value we have $x = \tan \theta $.
Now we know the trigonometric identity: $\tan 2\theta = \left( {\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}} \right)$. In this identity we can transfer the tan from the left hand side of the right hand side: we can write it as $2\theta = {\tan ^{ - 1}}\left( {\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}} \right)$.
Now we can substitute the value $\tan \theta = x$ in the identity and it gives us $2\theta = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$.
Also we have assumed ${\tan ^{ - 1}}x = \theta $, so by putting this back in place of $\theta $, we can write $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$.
Hence it is proved that : $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}$.
Note: Before solving this kind of question we should have the full knowledge of the trigonometric identities and their formulas. There is an alternate way to solve this question with the help of another formula i.e. ${\tan ^{ - 1}}a + {\tan ^{ - 1}}b = \arctan \left( {\dfrac{{a + b}}{{1 - ab}}} \right)$. We can assume that the value of $a = b = x$, so by putting this in the formula we also get the answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE