Answer
Verified
497.1k+ views
Hint: A.M here means arithmetic mean, For this question we have to use the properties of roots of quadratic equations. These properties include the sum of roots and product of roots, equate these properties to the equation given above and then proceed.
Complete step-by-step answer:
We know the standard quadratic equation \[a{x^2} + bx + c = 0\] and let its roots be α and β.
Properties α + β = \[\dfrac{{ - b}}{a}\]……………..(1)
α×β = \[\dfrac{c}{a}\]………………….(2)
Taking the equation \[{x^2} - 2ax + {b^2} = 0\], let its roots be m and n
Therefore using equation (1) we get
\[ \Rightarrow m + n = \dfrac{{ - ( - 2a)}}{1}\]
\[ \Rightarrow m + n = 2a\]………..(3)
Since we have to find the arithmetic mean of the equation \[{x^2} - 2ax + {b^2} = 0\]
∴A.M will be \[\dfrac{{m + n}}{2}\] using (3) in it we get
∴\[\dfrac{{2a}}{2}\]= a
∴ A.M of \[{x^2} - 2ax + {b^2} = 0\] is a.
Let the roots of \[{x^2} - 2bx + {a^2} = 0\] be p and q
Now using the property of product of roots i.e. equation (2)
\[ \Rightarrow \]p×q = \[\dfrac{{{a^2}}}{1}\]
\[ \Rightarrow \sqrt {p \times q} = a\]
This shows that A.M of \[{x^2} - 2ax + {b^2} = 0\]= G.M of \[{x^2} - 2bx + {a^2} = 0\]
Note: We know that standard Quadratic equation is \[a{x^2} + bx + c = 0\], where a is the coefficient of\[{x^2}\], b is the coefficient of x and c is the constant and a≠0, since, if a=0, then the equation will no longer remain a quadratic.
Complete step-by-step answer:
We know the standard quadratic equation \[a{x^2} + bx + c = 0\] and let its roots be α and β.
Properties α + β = \[\dfrac{{ - b}}{a}\]……………..(1)
α×β = \[\dfrac{c}{a}\]………………….(2)
Taking the equation \[{x^2} - 2ax + {b^2} = 0\], let its roots be m and n
Therefore using equation (1) we get
\[ \Rightarrow m + n = \dfrac{{ - ( - 2a)}}{1}\]
\[ \Rightarrow m + n = 2a\]………..(3)
Since we have to find the arithmetic mean of the equation \[{x^2} - 2ax + {b^2} = 0\]
∴A.M will be \[\dfrac{{m + n}}{2}\] using (3) in it we get
∴\[\dfrac{{2a}}{2}\]= a
∴ A.M of \[{x^2} - 2ax + {b^2} = 0\] is a.
Let the roots of \[{x^2} - 2bx + {a^2} = 0\] be p and q
Now using the property of product of roots i.e. equation (2)
\[ \Rightarrow \]p×q = \[\dfrac{{{a^2}}}{1}\]
\[ \Rightarrow \sqrt {p \times q} = a\]
This shows that A.M of \[{x^2} - 2ax + {b^2} = 0\]= G.M of \[{x^2} - 2bx + {a^2} = 0\]
Note: We know that standard Quadratic equation is \[a{x^2} + bx + c = 0\], where a is the coefficient of\[{x^2}\], b is the coefficient of x and c is the constant and a≠0, since, if a=0, then the equation will no longer remain a quadratic.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE