How to prove that an exterior angle of a cyclic quadrilateral is equal to its opposite interior angle?
Answer
Verified
442.5k+ views
Hint:
Here, we will first construct a cyclic quadrilateral with the angles. Then by using the properties of the cyclic quadrilateral, we will get two equations. We will then equate the equations and simplify them further to prove that an exterior angle of a cyclic quadrilateral is equal to its opposite interior angle.
Complete step by step solution:
We will first draw the diagram based on the given information. Let ABCD be a cyclic quadrilateral. Now, let us consider a line segment DE extending from the base of the cyclic quadrilateral.
Now, we have to prove \[\angle BDE = \angle CAB\].
From the figure, we can say \[\angle BDE\] is an exterior angle of a cyclic quadrilateral. \[\angle CAB\] is an interior angle opposite to the exterior angle.
Now, let us consider \[\angle BDE = y\], \[\angle CDB = x\] and \[\angle BAC = z\]
We know that opposite angles of a cyclic quadrilateral are supplementary.
\[ \Rightarrow \angle CDB + \angle BAC = 180^\circ \]
Now, we get
\[ \Rightarrow x + z = 180^\circ \] ………………………………………..\[\left( 1 \right)\]
We know that adjacent angles in a straight angle are supplementary.
\[ \Rightarrow \angle CDB + \angle BDE = 180^\circ \]
Substituting the values from the figure, we get
\[ \Rightarrow x + y = 180^\circ \] …………………………………………………………………..\[\left( 2 \right)\]
Now, by equating the equations \[\left( 1 \right)\] and \[\left( 2 \right)\], we get
\[ \Rightarrow x + z = x + y\]
Subtracting \[x\] from both sides, we get
\[ \Rightarrow z = y\]
Thus, we get \[\angle BDE = \angle BAC\].
Therefore, an exterior angle of a cyclic quadrilateral is equal to its opposite interior angle which is also the property of a cyclic quadrilateral.
Note:
We know that a Quadrilateral is a four sided polygon. Cyclic Quadrilateral is a Quadrilateral which is inscribed on a circle and lies within the circumference of the circles. An angle formed by extending any one side of a polygon is called an exterior angle. Some of the properties of a cyclic quadrilateral are the sum of either pair of a opposite angles of a quadrilateral is \[180^\circ \] and if the sum of any pair of opposite angles of a quadrilateral is \[180^\circ \] then the quadrilateral is cyclic.
Here, we will first construct a cyclic quadrilateral with the angles. Then by using the properties of the cyclic quadrilateral, we will get two equations. We will then equate the equations and simplify them further to prove that an exterior angle of a cyclic quadrilateral is equal to its opposite interior angle.
Complete step by step solution:
We will first draw the diagram based on the given information. Let ABCD be a cyclic quadrilateral. Now, let us consider a line segment DE extending from the base of the cyclic quadrilateral.
Now, we have to prove \[\angle BDE = \angle CAB\].
From the figure, we can say \[\angle BDE\] is an exterior angle of a cyclic quadrilateral. \[\angle CAB\] is an interior angle opposite to the exterior angle.
Now, let us consider \[\angle BDE = y\], \[\angle CDB = x\] and \[\angle BAC = z\]
We know that opposite angles of a cyclic quadrilateral are supplementary.
\[ \Rightarrow \angle CDB + \angle BAC = 180^\circ \]
Now, we get
\[ \Rightarrow x + z = 180^\circ \] ………………………………………..\[\left( 1 \right)\]
We know that adjacent angles in a straight angle are supplementary.
\[ \Rightarrow \angle CDB + \angle BDE = 180^\circ \]
Substituting the values from the figure, we get
\[ \Rightarrow x + y = 180^\circ \] …………………………………………………………………..\[\left( 2 \right)\]
Now, by equating the equations \[\left( 1 \right)\] and \[\left( 2 \right)\], we get
\[ \Rightarrow x + z = x + y\]
Subtracting \[x\] from both sides, we get
\[ \Rightarrow z = y\]
Thus, we get \[\angle BDE = \angle BAC\].
Therefore, an exterior angle of a cyclic quadrilateral is equal to its opposite interior angle which is also the property of a cyclic quadrilateral.
Note:
We know that a Quadrilateral is a four sided polygon. Cyclic Quadrilateral is a Quadrilateral which is inscribed on a circle and lies within the circumference of the circles. An angle formed by extending any one side of a polygon is called an exterior angle. Some of the properties of a cyclic quadrilateral are the sum of either pair of a opposite angles of a quadrilateral is \[180^\circ \] and if the sum of any pair of opposite angles of a quadrilateral is \[180^\circ \] then the quadrilateral is cyclic.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
Write an application to the principal requesting five class 10 english CBSE
Difference between mass and weight class 10 physics CBSE
Saptarishi is the Indian name of which Constellation class 10 social science CBSE
What is Commercial Farming ? What are its types ? Explain them with Examples
What are five examples of facts and opinions class 10 english CBSE
Which state has the longest coastline in India A Tamil class 10 social science CBSE