Answer
Verified
503.1k+ views
Hint: Prove that any rectangle is a cyclic quadrilateral.
To prove the above statement, assume $\square $ ABCD to be any rectangle.
According to the properties of Rectangle, we can write,
\[\angle A = \angle B = \angle C = \angle D = 90^\circ \] ………………….. (1)
(All angles of a rectangle are always\[90^\circ \])
As we have to prove that rectangle can be inscribed in a circle which means any rectangle is a
Cyclic Quadrilateral, we should know the necessary and sufficient condition for a quadrilateral
to be Cyclic which is given below,
Condition: Any quadrilateral can be a cyclic quadrilateral if it’s opposite angles is
supplementary i.e. their summation should be equal to $180^\circ $
From figure and equation (1) we can write,
\[\angle A=\angle C=90{}^\circ \] $\therefore \angle A+\angle C=90{}^\circ +90{}^\circ =180{}^\circ
$…………………………. (2)
And,
\[\angle B = \angle D = 90^\circ \] $\therefore \angle B + \angle D = 90^\circ + 90^\circ =
180^\circ $……………………………. (3)
From (2) and (3) it is clear that the pairs of opposite angles of rectangle ABCD are Supplementary.
And therefore, Rectangle ABCD is a Cyclic Quadrilateral.
As we assumed rectangle ABCD to be any rectangle, therefore we can generalize our statement as,
Any rectangle can be a cyclic quadrilateral and therefore any rectangle can be inscribed in a circle.
Hence proved.
Note:I have inscribed the above rectangle in a circle geometrically therefore it is proved experimentally also.
To prove the above statement, assume $\square $ ABCD to be any rectangle.
According to the properties of Rectangle, we can write,
\[\angle A = \angle B = \angle C = \angle D = 90^\circ \] ………………….. (1)
(All angles of a rectangle are always\[90^\circ \])
As we have to prove that rectangle can be inscribed in a circle which means any rectangle is a
Cyclic Quadrilateral, we should know the necessary and sufficient condition for a quadrilateral
to be Cyclic which is given below,
Condition: Any quadrilateral can be a cyclic quadrilateral if it’s opposite angles is
supplementary i.e. their summation should be equal to $180^\circ $
From figure and equation (1) we can write,
\[\angle A=\angle C=90{}^\circ \] $\therefore \angle A+\angle C=90{}^\circ +90{}^\circ =180{}^\circ
$…………………………. (2)
And,
\[\angle B = \angle D = 90^\circ \] $\therefore \angle B + \angle D = 90^\circ + 90^\circ =
180^\circ $……………………………. (3)
From (2) and (3) it is clear that the pairs of opposite angles of rectangle ABCD are Supplementary.
And therefore, Rectangle ABCD is a Cyclic Quadrilateral.
As we assumed rectangle ABCD to be any rectangle, therefore we can generalize our statement as,
Any rectangle can be a cyclic quadrilateral and therefore any rectangle can be inscribed in a circle.
Hence proved.
Note:I have inscribed the above rectangle in a circle geometrically therefore it is proved experimentally also.
If you are not getting it, think of the other simpler concept i.e. Semicircular angles are always right angles and therefore any right angle can be inscribed in a semicircle and we can easily consider two right angles in a rectangle to complete a circle.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE