
Prove that $\cot x\cot 2x - \cot 2x\cot 3x - \cot 3x\cot x = 1$
Answer
622.8k+ views
Hint: Approach the solution by using $\cot (A + B) = \dfrac{{\cot A\cot B - 1}}{{\cot A + \cot B}}$ and prove L.H.S=R.H.S.
Given L.H.S part as
$ \Rightarrow \cot x\cot 2x - \cot 2x\cot 3x - \cot 3x\cot x$
Let us take $\cot 3x$ term as common from last two terms
$ \Rightarrow \cot x\cot 2x - \cot 3x(\cot 2x + \cot x)$
Here $\cot 3x$ can be written as $\cot 2x + \cot x$ where we can rewrite the above expression as
$ \Rightarrow \cot x\cot 2x - (\cot 2x + \cot x)(\cot 2x + \cot x)$
Now let us apply $\cot (A + B) = \dfrac{{\cot A\cot B - 1}}{{\cot A + \cot B}}$ formula to one of the $\cot 2x + \cot x$ term.
On applying the formula and further simplification we get
$ \Rightarrow \cot x\cot 2x - \left( {\dfrac{{\cot 2x\cot x - 1}}{{\cot x + \cot 2x}}} \right)(\cot 2x + \cot x)$
$
\Rightarrow \cot x\cot 2x - (\cot 2x\cot x - 1) \\
\Rightarrow \cot x\cot 2x - \cot 2x\cot x + 1 \\
\Rightarrow 1 \\
$
Hence we proved that L.H.S=R.H.S
Note: Focus on simplification after applying the formula. Try to take common terms out rearranged in a format so that we can apply formula easily.
Given L.H.S part as
$ \Rightarrow \cot x\cot 2x - \cot 2x\cot 3x - \cot 3x\cot x$
Let us take $\cot 3x$ term as common from last two terms
$ \Rightarrow \cot x\cot 2x - \cot 3x(\cot 2x + \cot x)$
Here $\cot 3x$ can be written as $\cot 2x + \cot x$ where we can rewrite the above expression as
$ \Rightarrow \cot x\cot 2x - (\cot 2x + \cot x)(\cot 2x + \cot x)$
Now let us apply $\cot (A + B) = \dfrac{{\cot A\cot B - 1}}{{\cot A + \cot B}}$ formula to one of the $\cot 2x + \cot x$ term.
On applying the formula and further simplification we get
$ \Rightarrow \cot x\cot 2x - \left( {\dfrac{{\cot 2x\cot x - 1}}{{\cot x + \cot 2x}}} \right)(\cot 2x + \cot x)$
$
\Rightarrow \cot x\cot 2x - (\cot 2x\cot x - 1) \\
\Rightarrow \cot x\cot 2x - \cot 2x\cot x + 1 \\
\Rightarrow 1 \\
$
Hence we proved that L.H.S=R.H.S
Note: Focus on simplification after applying the formula. Try to take common terms out rearranged in a format so that we can apply formula easily.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

