Prove that: \[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}}.\]
Answer
Verified
476.4k+ views
Hint: To prove this, we simplify the both sides separately by writing all trigonometric ratios in terms of $\sin A$ and $\cos A$, then rationalize the term in the fraction which has complex denominator and solve to simplest form. We show that both sides give the same values.
* \[\csc A = \dfrac{1}{{\sin A}};\cot A = \dfrac{{\cos A}}{{\sin A}}\]
Complete step-by-step answer:
First we solve the LHS of the equation.
Write all trigonometric ratios in \[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}}\] in terms of $\sin A$ and $\cos A$.
\[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\dfrac{1}{{\sin A}} - \dfrac{{\cos A}}{{\sin A}}}} - \dfrac{1}{{\sin A}}\]
Taking LCM in the denominator of the first fraction.
\[ = \dfrac{1}{{\dfrac{{1 - \cos A}}{{\sin A}}}} - \dfrac{1}{{\sin A}}\]
\[ = \dfrac{{\sin A}}{{1 - \cos A}} - \dfrac{1}{{\sin A}}\]
Now we rationalize the first fraction by multiplying both numerator and denominator by \[(1 + \cos \theta )\].
\[ = \dfrac{{\sin A}}{{1 - \cos A}} \times \dfrac{{1 + \cos A}}{{1 + \cos A}} - \dfrac{1}{{\sin A}}\]
\[ = \dfrac{{\sin A(1 + \cos A)}}{{(1 + \cos A)(1 - \cos A)}} - \dfrac{1}{{\sin A}}\]
Now we know from the property that \[(a + b)(a - b) = {a^2} - {b^2}\]
Using the formula solve denominator of first fraction where \[a = 1,b = \cos A\]
\[ = \dfrac{{\sin A(1 + \cos A)}}{{(1 - {{\cos }^2}A)}} - \dfrac{1}{{\sin A}}\]
Now from the property \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] we can write \[1 - {\cos ^2}\theta = {\sin ^2}\theta \]
So, we substitute the value of \[1 - {\cos ^2}A = {\sin ^2}A\] in the denominator of the first fraction.
\[ = \dfrac{{\sin A(1 + \cos A)}}{{{{\sin }^2}A}} - \dfrac{1}{{\sin A}}\]
Cancel out the same factors from numerator and denominator.
\[ = \dfrac{{(1 + \cos A)}}{{\sin A}} - \dfrac{1}{{\sin A}}\]
Taking LCM of both the fractions.
\[
= \dfrac{{1 + \cos A - 1}}{{\sin A}} \\
= \dfrac{{\cos A}}{{\sin A}} \\
\]
\[ = \cot A\] {since \[\cot A = \dfrac{{\cos A}}{{\sin A}}\] }
\[ \Rightarrow \dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \cot A\] $...(1)$
Now we solve the RHS of the equation.
Write all trigonometric ratios in \[\dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}}\] in terms of $\sin A$ and $\cos A$.
\[\dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}}}}\]
Take LCM in the denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{1}{{\dfrac{{1 + \cos A}}{{\sin A}}}}$
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A}}{{1 + \cos A}}$
Now we rationalize the second fraction by multiplying both numerator and denominator by \[(1 - \cos A)\]
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A}}{{1 + \cos A}} \times \dfrac{{1 - \cos A}}{{1 - \cos A}}$
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{(1 - \cos A)(1 + \cos A)}}$
Now we know from the property that \[(a + b)(a - b) = {a^2} - {b^2}\]
Using the formula solve denominator of second fraction where \[a = 1,b = \cos A\]
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{1 - {{\cos }^2}A}}$
Now from the property \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] we can write \[1 - {\cos ^2}\theta = {\sin ^2}\theta \]
So, we substitute the value of \[1 - {\cos ^2}A = {\sin ^2}A\] in the denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{{{\sin }^2}A}}$
Cancel out factors from the numerator and denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{{(1 - \cos A)}}{{\sin A}}$
Taking LCM of both fractions.
$
= \dfrac{{1 - 1 + \cos A}}{{\sin A}} \\
= \dfrac{{\cos A}}{{\sin A}} \\
$
\[ = \cot A\] {since \[\cot A = \dfrac{{\cos A}}{{\sin A}}\] }
\[ \Rightarrow \dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}} = \cot A\] $...(2)$
Now we check if LHS is equal to RHS
Equating values of $\cot A$ from equation $(1)$ and $(2)$ we get
\[\cot A = \cot A\]
LHS = RHS
Hence, \[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}}.\]
Note: Students make mistakes of rationalizing with wrong factors, keep in mind we multiply with such a term that makes our denominator easy.
Many students make the mistake of solving the question without converting into sin and cos, which makes our solution complex.
* \[\csc A = \dfrac{1}{{\sin A}};\cot A = \dfrac{{\cos A}}{{\sin A}}\]
Complete step-by-step answer:
First we solve the LHS of the equation.
Write all trigonometric ratios in \[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}}\] in terms of $\sin A$ and $\cos A$.
\[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\dfrac{1}{{\sin A}} - \dfrac{{\cos A}}{{\sin A}}}} - \dfrac{1}{{\sin A}}\]
Taking LCM in the denominator of the first fraction.
\[ = \dfrac{1}{{\dfrac{{1 - \cos A}}{{\sin A}}}} - \dfrac{1}{{\sin A}}\]
\[ = \dfrac{{\sin A}}{{1 - \cos A}} - \dfrac{1}{{\sin A}}\]
Now we rationalize the first fraction by multiplying both numerator and denominator by \[(1 + \cos \theta )\].
\[ = \dfrac{{\sin A}}{{1 - \cos A}} \times \dfrac{{1 + \cos A}}{{1 + \cos A}} - \dfrac{1}{{\sin A}}\]
\[ = \dfrac{{\sin A(1 + \cos A)}}{{(1 + \cos A)(1 - \cos A)}} - \dfrac{1}{{\sin A}}\]
Now we know from the property that \[(a + b)(a - b) = {a^2} - {b^2}\]
Using the formula solve denominator of first fraction where \[a = 1,b = \cos A\]
\[ = \dfrac{{\sin A(1 + \cos A)}}{{(1 - {{\cos }^2}A)}} - \dfrac{1}{{\sin A}}\]
Now from the property \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] we can write \[1 - {\cos ^2}\theta = {\sin ^2}\theta \]
So, we substitute the value of \[1 - {\cos ^2}A = {\sin ^2}A\] in the denominator of the first fraction.
\[ = \dfrac{{\sin A(1 + \cos A)}}{{{{\sin }^2}A}} - \dfrac{1}{{\sin A}}\]
Cancel out the same factors from numerator and denominator.
\[ = \dfrac{{(1 + \cos A)}}{{\sin A}} - \dfrac{1}{{\sin A}}\]
Taking LCM of both the fractions.
\[
= \dfrac{{1 + \cos A - 1}}{{\sin A}} \\
= \dfrac{{\cos A}}{{\sin A}} \\
\]
\[ = \cot A\] {since \[\cot A = \dfrac{{\cos A}}{{\sin A}}\] }
\[ \Rightarrow \dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \cot A\] $...(1)$
Now we solve the RHS of the equation.
Write all trigonometric ratios in \[\dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}}\] in terms of $\sin A$ and $\cos A$.
\[\dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}}}}\]
Take LCM in the denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{1}{{\dfrac{{1 + \cos A}}{{\sin A}}}}$
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A}}{{1 + \cos A}}$
Now we rationalize the second fraction by multiplying both numerator and denominator by \[(1 - \cos A)\]
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A}}{{1 + \cos A}} \times \dfrac{{1 - \cos A}}{{1 - \cos A}}$
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{(1 - \cos A)(1 + \cos A)}}$
Now we know from the property that \[(a + b)(a - b) = {a^2} - {b^2}\]
Using the formula solve denominator of second fraction where \[a = 1,b = \cos A\]
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{1 - {{\cos }^2}A}}$
Now from the property \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] we can write \[1 - {\cos ^2}\theta = {\sin ^2}\theta \]
So, we substitute the value of \[1 - {\cos ^2}A = {\sin ^2}A\] in the denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{{{\sin }^2}A}}$
Cancel out factors from the numerator and denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{{(1 - \cos A)}}{{\sin A}}$
Taking LCM of both fractions.
$
= \dfrac{{1 - 1 + \cos A}}{{\sin A}} \\
= \dfrac{{\cos A}}{{\sin A}} \\
$
\[ = \cot A\] {since \[\cot A = \dfrac{{\cos A}}{{\sin A}}\] }
\[ \Rightarrow \dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}} = \cot A\] $...(2)$
Now we check if LHS is equal to RHS
Equating values of $\cot A$ from equation $(1)$ and $(2)$ we get
\[\cot A = \cot A\]
LHS = RHS
Hence, \[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}}.\]
Note: Students make mistakes of rationalizing with wrong factors, keep in mind we multiply with such a term that makes our denominator easy.
Many students make the mistake of solving the question without converting into sin and cos, which makes our solution complex.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE