Answer
Verified
430.8k+ views
Hint: Here, we will use the Trigonometric Identity, trigonometric ratios and a suitable Algebraic Identity to prove the given trigonometric function. Trigonometric Ratios of a Particular angle are the ratios of the sides of a right angled triangle with respect to any of its acute angle.
Formula Used:
We will use the following formula:
1. Trigonometric Identity: \[{\sin ^2}x + {\cos ^2}x = 1\].
2. The difference between the square of the numbers is given by an Algebraic Identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\].
3. Trigonometric Ratio: \[\csc A = \dfrac{1}{{\sin A}}\] and \[\cot A = \dfrac{{\cos A}}{{\sin A}}\].
Complete Step by Step Solution:
We are given that the trigonometric function \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \csc A + \cot A\].
Now, we will multiply the numerator and the denominator of the given fraction by \[\sin A\], so we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{{\sin A\left( {\cos A - \sin A + 1} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Now, by multiplying the terms with the terms inside the Parentheses only in the numerator, we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{{\sin A\cos A - {{\sin }^2}A + \sin A}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Trigonometric Identity: \[{\sin ^2}x + {\cos ^2}x = 1\]
Now, by rewriting the equation using the Trigonometric Identity, we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{{\sin A\cos A + \sin A - \left( {1 - {{\cos }^2}A} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
The difference between the square of the numbers is given by an Algebraic Identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Now, by using an Algebraic Identity, we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{{\sin A\cos A + \sin A - \left( {1 + \cos A} \right)\left( {1 - \cos A} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Now, by taking out the common terms, we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{{\sin A\left( {1 + \cos A} \right) - \left( {1 + \cos A} \right)\left( {1 - \cos A} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Again by taking out the common terms, we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{{\left( {1 + \cos A} \right)\left( {\sin A - 1 + \cos A} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{{\left( {1 + \cos A} \right)\left( {\cos A + \sin A - 1} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Now, by cancelling out the common terms, we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{{\left( {1 + \cos A} \right)}}{{\sin A}}\]
Now, by segregating the terms, we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}}\]
Trigonometric Ratio: \[\csc A = \dfrac{1}{{\sin A}}\] and \[\cot A = \dfrac{{\cos A}}{{\sin A}}\]
Now, by using the Trigonometric Ratio, we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \csc A + \cot A\]
Therefore, \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \csc A + \cot A\]is proved.
Note:
We know that Trigonometric Equation is defined as an equation involving trigonometric ratios. Trigonometric identity is an equation which is always true for all the variables. We should know that we have many trigonometric identities which are related to all the other trigonometric equations. Trigonometric Ratios are used to find the relationships between the sides of a right angle triangle.
Formula Used:
We will use the following formula:
1. Trigonometric Identity: \[{\sin ^2}x + {\cos ^2}x = 1\].
2. The difference between the square of the numbers is given by an Algebraic Identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\].
3. Trigonometric Ratio: \[\csc A = \dfrac{1}{{\sin A}}\] and \[\cot A = \dfrac{{\cos A}}{{\sin A}}\].
Complete Step by Step Solution:
We are given that the trigonometric function \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \csc A + \cot A\].
Now, we will multiply the numerator and the denominator of the given fraction by \[\sin A\], so we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{{\sin A\left( {\cos A - \sin A + 1} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Now, by multiplying the terms with the terms inside the Parentheses only in the numerator, we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{{\sin A\cos A - {{\sin }^2}A + \sin A}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Trigonometric Identity: \[{\sin ^2}x + {\cos ^2}x = 1\]
Now, by rewriting the equation using the Trigonometric Identity, we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{{\sin A\cos A + \sin A - \left( {1 - {{\cos }^2}A} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
The difference between the square of the numbers is given by an Algebraic Identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Now, by using an Algebraic Identity, we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{{\sin A\cos A + \sin A - \left( {1 + \cos A} \right)\left( {1 - \cos A} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Now, by taking out the common terms, we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{{\sin A\left( {1 + \cos A} \right) - \left( {1 + \cos A} \right)\left( {1 - \cos A} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Again by taking out the common terms, we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{{\left( {1 + \cos A} \right)\left( {\sin A - 1 + \cos A} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{{\left( {1 + \cos A} \right)\left( {\cos A + \sin A - 1} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}\]
Now, by cancelling out the common terms, we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{{\left( {1 + \cos A} \right)}}{{\sin A}}\]
Now, by segregating the terms, we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}}\]
Trigonometric Ratio: \[\csc A = \dfrac{1}{{\sin A}}\] and \[\cot A = \dfrac{{\cos A}}{{\sin A}}\]
Now, by using the Trigonometric Ratio, we get
\[ \Rightarrow \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \csc A + \cot A\]
Therefore, \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \csc A + \cot A\]is proved.
Note:
We know that Trigonometric Equation is defined as an equation involving trigonometric ratios. Trigonometric identity is an equation which is always true for all the variables. We should know that we have many trigonometric identities which are related to all the other trigonometric equations. Trigonometric Ratios are used to find the relationships between the sides of a right angle triangle.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE