Answer
Verified
450.9k+ views
Hint: Use conversion of secant function into cosine function. Use the trigonometric identity \[\cos 2x = 1 - 2{\sin ^2}x\] to open the values required in the numerator and denominator. Combine the terms to form suitable pairs using the identity \[2\sin x\cos x = \sin 2x\] in the end.
* \[\sec x = \dfrac{1}{{\cos x}}\]
* \[\cos 2x = 1 - 2{\sin ^2}x\]
* \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
Complete step-by-step solution:
We have to prove \[\dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\tan 8A}}{{\tan 2A}}\]
We solve the left hand side of the equation
Since LHS is \[\dfrac{{\sec 8A - 1}}{{\sec 4A - 1}}\], we transform secant functions to cosine functions using \[\sec x = \dfrac{1}{{\cos x}}\]
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\dfrac{1}{{\cos 8A}} - 1}}{{\dfrac{1}{{\cos 4A}} - 1}}\]
Take LCM in both numerator and denominator of RHS of the equation
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\dfrac{{1 - \cos 8A}}{{\cos 8A}}}}{{\dfrac{{1 - \cos 4A}}{{\cos 4A}}}}\]
Write the right hand side of the equation in simpler form
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\left( {1 - \cos 8A} \right)}}{{\cos 8A}} \times \dfrac{{\cos 4A}}{{\left( {1 - \cos 4A} \right)}}\],,,,,,,,,,,,,,,,,,,,,,, … (1)
Now we calculate the values of \[\cos 8A\]and\[\cos 4A\]using the identity \[\cos 2x = 1 - 2{\sin ^2}x\]
Since, \[\cos 2x = 1 - 2{\sin ^2}x\]
\[ \Rightarrow \cos 4A = \cos 2(2A) = 1 - 2{\sin ^2}(2A)\] …………………...… (2)
Similarly,
\[ \Rightarrow \cos 8A = \cos 2(4A) = 1 - 2{\sin ^2}(4A)\]..................… (3)
Substitute the values from equations (2) and (3) in brackets of equation (1)
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\left( {1 - \left( {1 - 2{{\sin }^2}(4A)} \right)} \right)}}{{\cos 8A}} \times \dfrac{{\cos 4A}}{{\left( {1 - \left( {1 - 2{{\sin }^2}(2A)} \right)} \right)}}\]
Calculate the value inside the brackets in both numerator and denominator
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\left( {1 - 1 + 2{{\sin }^2}(4A)} \right)}}{{\cos 8A}} \times \dfrac{{\cos 4A}}{{\left( {1 - 1 + 2{{\sin }^2}(2A)} \right)}}\]
Cancel same terms having opposite signs inside the bracket
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\left( {2{{\sin }^2}(4A)} \right)}}{{\cos 8A}} \times \dfrac{{\cos 4A}}{{\left( {2{{\sin }^2}(2A)} \right)}}\]
Write numerator and denominators after multiplication
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\left( {2{{\sin }^2}(4A)} \right)\cos 4A}}{{\left( {2{{\sin }^2}(2A)} \right)\cos 8A}}\].....................… (4)
We can write \[\left( {2{{\sin }^2}(4A)} \right)\cos 4A = \left( {2\sin 4A\cos 4A} \right)\sin 4A\]
Use the identity\[2\sin x\cos x = \sin 2x\] to write\[\left( {2\sin 4A\cos 4A} \right) = \sin 2(4A) = \sin 8A\]
\[ \Rightarrow \left( {2{{\sin }^2}(4A)} \right)\cos 4A = \sin 8A\sin 4A\]
Equation (4) becomes
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\sin 8A\sin 4A}}{{\left( {2{{\sin }^2}(2A)} \right)\cos 8A}}\]
Since \[\dfrac{{\sin x}}{{\cos x}} = \tan x \Rightarrow \dfrac{{\sin 8A}}{{\cos 8A}} = \tan 8A\]
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\tan 8A\sin 4A}}{{\left( {2{{\sin }^2}(2A)} \right)}}\]................… (5)
Now we can write \[\sin 4A = 2\sin 2A\cos 2A\] using the identity \[2\sin x\cos x = \sin 2x\]
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\tan 8A2\sin 2A\cos 2A}}{{2\sin 2A\sin 2A}}\]
Cancel same factors from numerator and denominator in right hand side of the equation
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\tan 8A\cos 2A}}{{\sin 2A}}\]
Write \[\dfrac{{\sin 2A}}{{\cos 2A}} = \tan 2A\]
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\tan 8A}}{{\tan 2A}}\]
This is equal to the right hand side of the given equation.
\[\therefore \]LHS \[ = \]RHS
Hence Proved
Note: Students are likely to make mistake of substituting all the values of \[\cos 4A\] and \[\cos 8A\] in both numerator and denominator, keep in mind the right hand side of the equation has angles of tangent as 8A and 2A, so don’t change all the trigonometric terms in the equation, only change the part that seems that it can be reduced to smaller form.
* \[\sec x = \dfrac{1}{{\cos x}}\]
* \[\cos 2x = 1 - 2{\sin ^2}x\]
* \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
Complete step-by-step solution:
We have to prove \[\dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\tan 8A}}{{\tan 2A}}\]
We solve the left hand side of the equation
Since LHS is \[\dfrac{{\sec 8A - 1}}{{\sec 4A - 1}}\], we transform secant functions to cosine functions using \[\sec x = \dfrac{1}{{\cos x}}\]
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\dfrac{1}{{\cos 8A}} - 1}}{{\dfrac{1}{{\cos 4A}} - 1}}\]
Take LCM in both numerator and denominator of RHS of the equation
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\dfrac{{1 - \cos 8A}}{{\cos 8A}}}}{{\dfrac{{1 - \cos 4A}}{{\cos 4A}}}}\]
Write the right hand side of the equation in simpler form
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\left( {1 - \cos 8A} \right)}}{{\cos 8A}} \times \dfrac{{\cos 4A}}{{\left( {1 - \cos 4A} \right)}}\],,,,,,,,,,,,,,,,,,,,,,, … (1)
Now we calculate the values of \[\cos 8A\]and\[\cos 4A\]using the identity \[\cos 2x = 1 - 2{\sin ^2}x\]
Since, \[\cos 2x = 1 - 2{\sin ^2}x\]
\[ \Rightarrow \cos 4A = \cos 2(2A) = 1 - 2{\sin ^2}(2A)\] …………………...… (2)
Similarly,
\[ \Rightarrow \cos 8A = \cos 2(4A) = 1 - 2{\sin ^2}(4A)\]..................… (3)
Substitute the values from equations (2) and (3) in brackets of equation (1)
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\left( {1 - \left( {1 - 2{{\sin }^2}(4A)} \right)} \right)}}{{\cos 8A}} \times \dfrac{{\cos 4A}}{{\left( {1 - \left( {1 - 2{{\sin }^2}(2A)} \right)} \right)}}\]
Calculate the value inside the brackets in both numerator and denominator
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\left( {1 - 1 + 2{{\sin }^2}(4A)} \right)}}{{\cos 8A}} \times \dfrac{{\cos 4A}}{{\left( {1 - 1 + 2{{\sin }^2}(2A)} \right)}}\]
Cancel same terms having opposite signs inside the bracket
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\left( {2{{\sin }^2}(4A)} \right)}}{{\cos 8A}} \times \dfrac{{\cos 4A}}{{\left( {2{{\sin }^2}(2A)} \right)}}\]
Write numerator and denominators after multiplication
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\left( {2{{\sin }^2}(4A)} \right)\cos 4A}}{{\left( {2{{\sin }^2}(2A)} \right)\cos 8A}}\].....................… (4)
We can write \[\left( {2{{\sin }^2}(4A)} \right)\cos 4A = \left( {2\sin 4A\cos 4A} \right)\sin 4A\]
Use the identity\[2\sin x\cos x = \sin 2x\] to write\[\left( {2\sin 4A\cos 4A} \right) = \sin 2(4A) = \sin 8A\]
\[ \Rightarrow \left( {2{{\sin }^2}(4A)} \right)\cos 4A = \sin 8A\sin 4A\]
Equation (4) becomes
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\sin 8A\sin 4A}}{{\left( {2{{\sin }^2}(2A)} \right)\cos 8A}}\]
Since \[\dfrac{{\sin x}}{{\cos x}} = \tan x \Rightarrow \dfrac{{\sin 8A}}{{\cos 8A}} = \tan 8A\]
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\tan 8A\sin 4A}}{{\left( {2{{\sin }^2}(2A)} \right)}}\]................… (5)
Now we can write \[\sin 4A = 2\sin 2A\cos 2A\] using the identity \[2\sin x\cos x = \sin 2x\]
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\tan 8A2\sin 2A\cos 2A}}{{2\sin 2A\sin 2A}}\]
Cancel same factors from numerator and denominator in right hand side of the equation
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\tan 8A\cos 2A}}{{\sin 2A}}\]
Write \[\dfrac{{\sin 2A}}{{\cos 2A}} = \tan 2A\]
\[ \Rightarrow \dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\tan 8A}}{{\tan 2A}}\]
This is equal to the right hand side of the given equation.
\[\therefore \]LHS \[ = \]RHS
Hence Proved
Note: Students are likely to make mistake of substituting all the values of \[\cos 4A\] and \[\cos 8A\] in both numerator and denominator, keep in mind the right hand side of the equation has angles of tangent as 8A and 2A, so don’t change all the trigonometric terms in the equation, only change the part that seems that it can be reduced to smaller form.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE