
Prove that:
$ \left( {\dfrac{{\sin \theta + \cos \theta }}{{\sin \theta - \cos \theta }}} \right) + \left( {\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta + \cos \theta }}} \right) = \dfrac{2}{{2{{\sin }^2}\theta - 1}} $
Answer
573.6k+ views
Hint: Cross multiply the LHS and then use the expansion formula of square to expand it. Then use the trigonometric identity of \[\sin \theta \] and $ \cos \theta $ to simplify the expression. Keep on simplifying it until it turns equal to RHS.
Complete step-by-step answer:
The equation given in the question is
$ \Rightarrow \left( {\dfrac{{\sin \theta + \cos \theta }}{{\sin \theta - \cos \theta }}} \right) + \left( {\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta + \cos \theta }}} \right) = \dfrac{2}{{2{{\sin }^2}\theta - 1}} $
Then, LHS
$ = \left( {\dfrac{{\sin \theta + \cos \theta }}{{\sin \theta - \cos \theta }}} \right) + \left( {\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta + \cos \theta }}} \right) $
By cross multiplying, we get
$ = \dfrac{{{{\left( {\sin \theta + \cos \theta } \right)}^2} + {{\left( {\sin \theta - \cos \theta } \right)}^2}}}{{\left( {\sin \theta - \cos \theta } \right)\left( {\sin \theta + \cos \theta } \right)}} $
Now, by using the formulae
$ (a + b) = {a^2} + {b^2} + 2ab,{(a - b)^2} = {a^2} + {b^2} - 2ab $ and $ (a - b)(a + b) = {a^2} - {b^2} $
We can write the above expression as
$ = \dfrac{{{{\sin }^2}\theta + {{\cos }^2}\theta + 2\sin \theta \cos \theta + {{\sin }^2}\theta + {{\cos }^2}\theta - 2\sin \theta \cos \theta }}{{{{\sin }^2}\theta - {{\cos }^2}\theta }} $
Now we know that,
$ {\sin ^2}\theta + {\cos ^2}\theta = 1 $
By using this identity and cancelling the terms with opposite signs, we can write
$ = \dfrac{{1 + 1}}{{{{\sin }^2}\theta - (1 - {{\sin }^2}\theta )}} $
On simplifying it, we get
$ = \dfrac{2}{{{{\sin }^2}\theta - 1 + {{\sin }^2}\theta }} $
\[ = \dfrac{2}{{2{{\sin }^2}\theta - 1}}\]
= RHS
Hence it is proved that,
$ \left( {\dfrac{{\sin \theta + \cos \theta }}{{\sin \theta - \cos \theta }}} \right) + \left( {\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta + \cos \theta }}} \right) = \dfrac{2}{{2{{\sin }^2}\theta - 1}} $
Note: It should click you as soon as you see the question that you need to cross multiply it. Because in LHS, the term in the numerator of the first term is equal to the term in the denominator of the second term. So it was very clear that if we cross multiply, then it can be expanded using the formula of $ {(a + b)^2} $ which further can be simplified using trigonometric identities.
Complete step-by-step answer:
The equation given in the question is
$ \Rightarrow \left( {\dfrac{{\sin \theta + \cos \theta }}{{\sin \theta - \cos \theta }}} \right) + \left( {\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta + \cos \theta }}} \right) = \dfrac{2}{{2{{\sin }^2}\theta - 1}} $
Then, LHS
$ = \left( {\dfrac{{\sin \theta + \cos \theta }}{{\sin \theta - \cos \theta }}} \right) + \left( {\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta + \cos \theta }}} \right) $
By cross multiplying, we get
$ = \dfrac{{{{\left( {\sin \theta + \cos \theta } \right)}^2} + {{\left( {\sin \theta - \cos \theta } \right)}^2}}}{{\left( {\sin \theta - \cos \theta } \right)\left( {\sin \theta + \cos \theta } \right)}} $
Now, by using the formulae
$ (a + b) = {a^2} + {b^2} + 2ab,{(a - b)^2} = {a^2} + {b^2} - 2ab $ and $ (a - b)(a + b) = {a^2} - {b^2} $
We can write the above expression as
$ = \dfrac{{{{\sin }^2}\theta + {{\cos }^2}\theta + 2\sin \theta \cos \theta + {{\sin }^2}\theta + {{\cos }^2}\theta - 2\sin \theta \cos \theta }}{{{{\sin }^2}\theta - {{\cos }^2}\theta }} $
Now we know that,
$ {\sin ^2}\theta + {\cos ^2}\theta = 1 $
By using this identity and cancelling the terms with opposite signs, we can write
$ = \dfrac{{1 + 1}}{{{{\sin }^2}\theta - (1 - {{\sin }^2}\theta )}} $
On simplifying it, we get
$ = \dfrac{2}{{{{\sin }^2}\theta - 1 + {{\sin }^2}\theta }} $
\[ = \dfrac{2}{{2{{\sin }^2}\theta - 1}}\]
= RHS
Hence it is proved that,
$ \left( {\dfrac{{\sin \theta + \cos \theta }}{{\sin \theta - \cos \theta }}} \right) + \left( {\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta + \cos \theta }}} \right) = \dfrac{2}{{2{{\sin }^2}\theta - 1}} $
Note: It should click you as soon as you see the question that you need to cross multiply it. Because in LHS, the term in the numerator of the first term is equal to the term in the denominator of the second term. So it was very clear that if we cross multiply, then it can be expanded using the formula of $ {(a + b)^2} $ which further can be simplified using trigonometric identities.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

