Answer
Verified
501.6k+ views
Hint: Transform the whole equation in terms of \[\sin \theta \] and \[\cos \theta \] and then convert into desired form.
We have to prove that \[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}={{\left( 1+\sec A\operatorname{cosec}A \right)}^{2}}....\left( i \right)\]
Taking \[LHS\] of equation \[\left( i \right)\], we get
\[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}\]
We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]
Therefore, \[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}\]
\[={{\sin }^{2}}A+{{\sec }^{2}}A+2\sin A\sec A+{{\cos }^{2}}A+{{\operatorname{cosec}}^{2}}A+2\cos A\operatorname{cosec}A\]
Rearranging the equation, we get
\[\Rightarrow \left( {{\sin }^{2}}A+{{\cos }^{2}}A \right)+2\left( \sin A\sec A+\cos A\operatorname{cosec}A \right)+{{\sec }^{2}}A+{{\operatorname{cosec}}^{2}}A....\left( ii \right)\]
We know that \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\]
Putting this value in equation \[\left( ii \right)\].
We get \[1+2\left( \sin A\sec A+\cos A\operatorname{cosec}A \right)+{{\sec }^{2}}A+{{\operatorname{cosec}}^{2}}A...\left( iii \right)\]
We know that \[\sec A=\dfrac{1}{\cos A}\] and \[\operatorname{cosec}A=\dfrac{1}{\sin A}\]
We will put the values of \[\sec A\] and \[\operatorname{cosec}A\] in equation \[\left( iii \right)\].
We get, \[1+2\left( \dfrac{\sin A}{\cos A}+\dfrac{\cos A}{\sin A} \right)+\left( \dfrac{1}{{{\sin }^{2}}A}+\dfrac{1}{{{\cos }^{2}}A} \right)\]
\[=1+2\left( \dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{\sin A\cos A} \right)+\left( \dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{{{\sin }^{2}}A{{\cos }^{2}}A} \right)\]
We know that \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\].
Hence we get,
\[1+2\left( \dfrac{1}{\sin A\cos A} \right)+\left( \dfrac{1}{{{\sin }^{2}}A{{\cos }^{2}}A} \right)\]
We know, \[\dfrac{1}{\sin A}=\operatorname{cosec}A\] and \[\dfrac{1}{\cos A}=\sec A\]
Hence, we get \[1+2\operatorname{cosec}A\sec A+{{\operatorname{cosec}}^{2}}A{{\sec }^{2}}A\]
We can write it as
\[{{\left( 1 \right)}^{2}}+{{\left( \operatorname{cosec}A\sec A \right)}^{2}}+2\left( \operatorname{cosec}A\sec A \right).1\]
We know that \[{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}\]
By considering \[a=1\] and \[\operatorname{cosec}A\sec A=B\]
We finally get \[LHS={{\left( 1+\operatorname{cosec}A\sec A \right)}^{2}}\] which is equal to \[\text{RHS}\].
Hence Proved.
Note: By looking the terms of \[\operatorname{cosec}A\] and \[secA\] in \[\text{RHS}\], students convert \[\sin A\] and \[\cos A\] into \[\dfrac{1}{\operatorname{cosec}A}\] and \[\dfrac{1}{secA}\] respectively in first step only, but that creates confusion and does not give the desired results.
We have to prove that \[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}={{\left( 1+\sec A\operatorname{cosec}A \right)}^{2}}....\left( i \right)\]
Taking \[LHS\] of equation \[\left( i \right)\], we get
\[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}\]
We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]
Therefore, \[{{\left( \sin A+\sec A \right)}^{2}}+{{\left( \cos A+\operatorname{cosec}A \right)}^{2}}\]
\[={{\sin }^{2}}A+{{\sec }^{2}}A+2\sin A\sec A+{{\cos }^{2}}A+{{\operatorname{cosec}}^{2}}A+2\cos A\operatorname{cosec}A\]
Rearranging the equation, we get
\[\Rightarrow \left( {{\sin }^{2}}A+{{\cos }^{2}}A \right)+2\left( \sin A\sec A+\cos A\operatorname{cosec}A \right)+{{\sec }^{2}}A+{{\operatorname{cosec}}^{2}}A....\left( ii \right)\]
We know that \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\]
Putting this value in equation \[\left( ii \right)\].
We get \[1+2\left( \sin A\sec A+\cos A\operatorname{cosec}A \right)+{{\sec }^{2}}A+{{\operatorname{cosec}}^{2}}A...\left( iii \right)\]
We know that \[\sec A=\dfrac{1}{\cos A}\] and \[\operatorname{cosec}A=\dfrac{1}{\sin A}\]
We will put the values of \[\sec A\] and \[\operatorname{cosec}A\] in equation \[\left( iii \right)\].
We get, \[1+2\left( \dfrac{\sin A}{\cos A}+\dfrac{\cos A}{\sin A} \right)+\left( \dfrac{1}{{{\sin }^{2}}A}+\dfrac{1}{{{\cos }^{2}}A} \right)\]
\[=1+2\left( \dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{\sin A\cos A} \right)+\left( \dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{{{\sin }^{2}}A{{\cos }^{2}}A} \right)\]
We know that \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\].
Hence we get,
\[1+2\left( \dfrac{1}{\sin A\cos A} \right)+\left( \dfrac{1}{{{\sin }^{2}}A{{\cos }^{2}}A} \right)\]
We know, \[\dfrac{1}{\sin A}=\operatorname{cosec}A\] and \[\dfrac{1}{\cos A}=\sec A\]
Hence, we get \[1+2\operatorname{cosec}A\sec A+{{\operatorname{cosec}}^{2}}A{{\sec }^{2}}A\]
We can write it as
\[{{\left( 1 \right)}^{2}}+{{\left( \operatorname{cosec}A\sec A \right)}^{2}}+2\left( \operatorname{cosec}A\sec A \right).1\]
We know that \[{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}\]
By considering \[a=1\] and \[\operatorname{cosec}A\sec A=B\]
We finally get \[LHS={{\left( 1+\operatorname{cosec}A\sec A \right)}^{2}}\] which is equal to \[\text{RHS}\].
Hence Proved.
Note: By looking the terms of \[\operatorname{cosec}A\] and \[secA\] in \[\text{RHS}\], students convert \[\sin A\] and \[\cos A\] into \[\dfrac{1}{\operatorname{cosec}A}\] and \[\dfrac{1}{secA}\] respectively in first step only, but that creates confusion and does not give the desired results.
Recently Updated Pages
In the following figure the value of resistor to be class 10 physics CBSE
What is the maximum resistance which can be made using class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE