
Prove that $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$ ( $x$ being measured in radians).
Answer
483.9k+ views
Hint: Sandwich theorem is useful in proving the limits given in the question.
Theorem: Sandwich Theorem:
Let \[f,g\] and $h$ be real functions such that $g\left( x \right) \leqslant f\left( x \right) \leqslant h\left( x \right)$ for all $x$ in the common domain of definition.
For some limit $a$, if \[\mathop {\lim }\limits_{x \to a} g\left( x \right) = l = \mathop {\lim }\limits_{x \to a} h\left( x \right)\], then \[\mathop {\lim }\limits_{x \to a} f\left( x \right) = l\]. This can be illustrated as the following:
Try to prove the inequality relating to trigonometric functions. $\cos x < \dfrac{{\sin x}}{x} < 1$, and the given limit can be easily proved by the sandwich theorem.
Complete step by step answer:
Step 1: Prove the inequality $\cos x < \dfrac{{\sin x}}{x} < 1$
Consider figure 1.
In figure 1, O is the center of the unit circle such that the angle $\angle AOC$ is $x$ radians and $0 < x < \dfrac{\pi }{2}$.
Line segment BA and CD are perpendicular to OA.
Further, join AC. Then
Area of $\vartriangle AOC$ < area of sector $OAC$ < area of $\vartriangle AOB$
The area of a triangle is half of the product of base and height.
Area of a sector of a circle = $\dfrac{\theta }{{2\pi }}\left( {\pi {r^2}} \right)$, where $\theta $ is the angle of the sector.
$ \Rightarrow \dfrac{1}{2}OA.CD < \dfrac{x}{{2\pi }}\pi {\left( {OA} \right)^2} < \dfrac{1}{2}OA.AB$
$ \Rightarrow CD < x\left( {OA} \right) < AB$ …… (1)
In $\vartriangle OCD$
$\sin x = \dfrac{{{\text{perpendicular}}}}{{{\text{hypotenuse}}}}$
Therefore, $\sin x = \dfrac{{CD}}{{OC}}$
The line segments OC and OA are the radius of the circle with center O in figure 1.
Thus, OC = OA
Therefore, $\sin x = \dfrac{{CD}}{{OA}}$
Hence, $CD = OA\sin x$
In $\vartriangle AOB$
$\tan x = \dfrac{{{\text{perpendicular}}}}{{{\text{base}}}}$
Therefore, $\tan x = \dfrac{{AB}}{{OA}}$
Hence, $AB = OA\tan x$
Put the values of CD and AB in the inequality (1)
$ \Rightarrow OA\sin x < x\left( {OA} \right) < OA\tan x$
We know $\tan x = \dfrac{{\sin x}}{{\cos x}}$
\[ \Rightarrow \sin x < x < \dfrac{{\sin x}}{{\cos x}}\]
Dividing throughout by $\sin x$, we get:
\[ \Rightarrow 1 < \dfrac{x}{{\sin x}} < \dfrac{1}{{\cos x}}\]
Take reciprocals throughout, we have:
$ \Rightarrow \cos x < \dfrac{{\sin x}}{x} < 1$
Step 2: Use sandwich theorem to prove the given limit
We know that $\mathop {\lim }\limits_{x \to a} \cos \left( {f\left( x \right)} \right) = \cos \mathop {\lim }\limits_{x \to a} \left( {f\left( x \right)} \right)$
Thus, the \[\mathop {\lim }\limits_{x \to 0} \cos x = \cos \mathop {\lim }\limits_{x \to 0} \left( x \right)\]
Therefore, $\cos 0 = 1$
Hence, $\mathop {\lim }\limits_{x \to 0} \cos x = 1$
And $\mathop {\lim }\limits_{x \to 1} 1 = 1$
We have, $\mathop {\lim }\limits_{x \to 0} \cos x = 1 = \mathop {\lim }\limits_{x \to 0} 1$
Then $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$ by the sandwich theorem.
The limit $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$ has been proved.
Note:
Use the above limit $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$ for future questions. For example:
Evaluate: $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 4x}}{{\sin 2x}}$
Multiplying and dividing by $4x$ and make the angles in the sine function and dividing angle the same.
\[ \Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 4x}}{{4x}} \times \dfrac{{2x}}{{\sin 2x}} \times 2} \right]\]
\[
\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 4x}}{{4x}} \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{1}{{\dfrac{{\sin 2x}}{{2x}}}}} \right] \times \mathop {\lim }\limits_{x \to 0} 2 \\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 4x}}{{4x}} \times \left[ {\dfrac{{\mathop {\lim }\limits_{x \to 0} 1}}{{\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 2x}}{{2x}}}}} \right] \times \mathop {\lim }\limits_{x \to 0} 2 \\
\Rightarrow 1 \times \dfrac{1}{1} \times 2 \\
\Rightarrow 2 \\
\]
Theorem: Sandwich Theorem:
Let \[f,g\] and $h$ be real functions such that $g\left( x \right) \leqslant f\left( x \right) \leqslant h\left( x \right)$ for all $x$ in the common domain of definition.
For some limit $a$, if \[\mathop {\lim }\limits_{x \to a} g\left( x \right) = l = \mathop {\lim }\limits_{x \to a} h\left( x \right)\], then \[\mathop {\lim }\limits_{x \to a} f\left( x \right) = l\]. This can be illustrated as the following:

Try to prove the inequality relating to trigonometric functions. $\cos x < \dfrac{{\sin x}}{x} < 1$, and the given limit can be easily proved by the sandwich theorem.
Complete step by step answer:
Step 1: Prove the inequality $\cos x < \dfrac{{\sin x}}{x} < 1$
Consider figure 1.

In figure 1, O is the center of the unit circle such that the angle $\angle AOC$ is $x$ radians and $0 < x < \dfrac{\pi }{2}$.
Line segment BA and CD are perpendicular to OA.
Further, join AC. Then
Area of $\vartriangle AOC$ < area of sector $OAC$ < area of $\vartriangle AOB$
The area of a triangle is half of the product of base and height.
Area of a sector of a circle = $\dfrac{\theta }{{2\pi }}\left( {\pi {r^2}} \right)$, where $\theta $ is the angle of the sector.
$ \Rightarrow \dfrac{1}{2}OA.CD < \dfrac{x}{{2\pi }}\pi {\left( {OA} \right)^2} < \dfrac{1}{2}OA.AB$
$ \Rightarrow CD < x\left( {OA} \right) < AB$ …… (1)
In $\vartriangle OCD$
$\sin x = \dfrac{{{\text{perpendicular}}}}{{{\text{hypotenuse}}}}$
Therefore, $\sin x = \dfrac{{CD}}{{OC}}$
The line segments OC and OA are the radius of the circle with center O in figure 1.
Thus, OC = OA
Therefore, $\sin x = \dfrac{{CD}}{{OA}}$
Hence, $CD = OA\sin x$
In $\vartriangle AOB$
$\tan x = \dfrac{{{\text{perpendicular}}}}{{{\text{base}}}}$
Therefore, $\tan x = \dfrac{{AB}}{{OA}}$
Hence, $AB = OA\tan x$
Put the values of CD and AB in the inequality (1)
$ \Rightarrow OA\sin x < x\left( {OA} \right) < OA\tan x$
We know $\tan x = \dfrac{{\sin x}}{{\cos x}}$
\[ \Rightarrow \sin x < x < \dfrac{{\sin x}}{{\cos x}}\]
Dividing throughout by $\sin x$, we get:
\[ \Rightarrow 1 < \dfrac{x}{{\sin x}} < \dfrac{1}{{\cos x}}\]
Take reciprocals throughout, we have:
$ \Rightarrow \cos x < \dfrac{{\sin x}}{x} < 1$
Step 2: Use sandwich theorem to prove the given limit
We know that $\mathop {\lim }\limits_{x \to a} \cos \left( {f\left( x \right)} \right) = \cos \mathop {\lim }\limits_{x \to a} \left( {f\left( x \right)} \right)$
Thus, the \[\mathop {\lim }\limits_{x \to 0} \cos x = \cos \mathop {\lim }\limits_{x \to 0} \left( x \right)\]
Therefore, $\cos 0 = 1$
Hence, $\mathop {\lim }\limits_{x \to 0} \cos x = 1$
And $\mathop {\lim }\limits_{x \to 1} 1 = 1$
We have, $\mathop {\lim }\limits_{x \to 0} \cos x = 1 = \mathop {\lim }\limits_{x \to 0} 1$
Then $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$ by the sandwich theorem.
The limit $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$ has been proved.
Note:
Use the above limit $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$ for future questions. For example:
Evaluate: $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 4x}}{{\sin 2x}}$
Multiplying and dividing by $4x$ and make the angles in the sine function and dividing angle the same.
\[ \Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 4x}}{{4x}} \times \dfrac{{2x}}{{\sin 2x}} \times 2} \right]\]
\[
\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 4x}}{{4x}} \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{1}{{\dfrac{{\sin 2x}}{{2x}}}}} \right] \times \mathop {\lim }\limits_{x \to 0} 2 \\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 4x}}{{4x}} \times \left[ {\dfrac{{\mathop {\lim }\limits_{x \to 0} 1}}{{\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 2x}}{{2x}}}}} \right] \times \mathop {\lim }\limits_{x \to 0} 2 \\
\Rightarrow 1 \times \dfrac{1}{1} \times 2 \\
\Rightarrow 2 \\
\]
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
