
Prove that \[{{r}_{1}}{{r}_{2}}{{r}_{3}}=r{{s}^{2}}\], where \[{{r}_{1}},{{r}_{2}}\]and \[{{r}_{3}}\]is the radius of the exterior circle on side A, B and C.
Answer
621k+ views
Hint: Use heron’s formula to solve. Multiply the radius of these circles considered to prove it. Find the radius of \[{{r}_{1}},{{r}_{2}}\]and \[{{r}_{3}}\]. Prove the LHS by multiplying \[{{r}_{1}},{{r}_{2}}\]and \[{{r}_{3}}\]..
Complete step-by-step answer:
Let us consider that \[{{r}_{1}},{{r}_{2}}\]and \[{{r}_{3}}\]are radius of the circle, opposite to a, b and c of the triangle ABC.
Let the triangle be the area of the triangle ABC.
S is the sum of the length of the triangle ABC.
\[\therefore s=\dfrac{a+b+c}{2}\]
Radius of the triangle, \[r=\dfrac{area}{sum-opposite side}\]
\[\therefore \]radius of \[{{r}_{1}}=\dfrac{\Delta }{s-a}\]
Similarly, \[{{r}_{2}}=\dfrac{\Delta }{s-b}\]and \[{{r}_{3}}=\dfrac{\Delta }{s-c}\]
\[{{r}_{1}}{{r}_{2}}{{r}_{3}}=\left( \dfrac{\Delta }{s-a} \right)\left( \dfrac{\Delta }{s-b} \right)\left( \dfrac{\Delta }{s-c} \right)\]
Where radius \[{{r}_{1}}\]is opposite to the side ‘a’ of \[\vartriangle ABC\]
radius \[{{r}_{2}}\]is opposite to the side ‘b’ of \[\vartriangle ABC\]
radius \[{{r}_{3}}\]is opposite to the side ‘c’ of \[\vartriangle ABC\]
\[\therefore {{r}_{1}}{{r}_{2}}{{r}_{3}}=\dfrac{{{\Delta }^{3}}}{\left( s-a \right)\left( s-b \right)\left( s-c \right)}-(1)\]
By using, Heron’s formula, we can take the area of the triangle, when the length of all three sides of triangle are known:
\[\Delta =\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}-(2)\]
The figure shows the geometrical significance of \[\left( s-a \right),\left( s-b \right)\]and \[\left( s-c \right)\].
In equation (1) multiply the numerator & denominator by ‘s’.
\[{{r}_{1}}{{r}_{2}}{{r}_{3}}=\dfrac{{{\Delta }^{3}}\times s}{s\times \left( s-a \right)\left( s-b \right)\left( s-c \right)}-(3)\]
We know, \[\Delta =\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}\]
Squaring equation (2) on both sides
\[{{\Delta }^{2}}=s\left( s-a \right)\left( s-b \right)\left( s-c \right)-(4)\]
Substitute the value of (4) in (3)
\[=\dfrac{s{{\Delta }^{3}}}{{{\Delta }^{2}}}=s\Delta -(5)\]
Multiply numerator and denominator by ‘s’ in equation (5)
\[={{s}^{2}}\dfrac{\Delta }{s}\]
We know the radius in circle, r = a / (sum of lengths of triangle) = \[\dfrac{a}{s}\]
By substituting the same, we get
\[{{r}_{1}}{{r}_{2}}{{r}_{3}}=r{{s}^{2}}\].
Note: Remember to use heron’s formula to simplify equation (1).
Complete step-by-step answer:
Let us consider that \[{{r}_{1}},{{r}_{2}}\]and \[{{r}_{3}}\]are radius of the circle, opposite to a, b and c of the triangle ABC.
Let the triangle be the area of the triangle ABC.
S is the sum of the length of the triangle ABC.
\[\therefore s=\dfrac{a+b+c}{2}\]
Radius of the triangle, \[r=\dfrac{area}{sum-opposite side}\]
\[\therefore \]radius of \[{{r}_{1}}=\dfrac{\Delta }{s-a}\]
Similarly, \[{{r}_{2}}=\dfrac{\Delta }{s-b}\]and \[{{r}_{3}}=\dfrac{\Delta }{s-c}\]
\[{{r}_{1}}{{r}_{2}}{{r}_{3}}=\left( \dfrac{\Delta }{s-a} \right)\left( \dfrac{\Delta }{s-b} \right)\left( \dfrac{\Delta }{s-c} \right)\]
Where radius \[{{r}_{1}}\]is opposite to the side ‘a’ of \[\vartriangle ABC\]
radius \[{{r}_{2}}\]is opposite to the side ‘b’ of \[\vartriangle ABC\]
radius \[{{r}_{3}}\]is opposite to the side ‘c’ of \[\vartriangle ABC\]
\[\therefore {{r}_{1}}{{r}_{2}}{{r}_{3}}=\dfrac{{{\Delta }^{3}}}{\left( s-a \right)\left( s-b \right)\left( s-c \right)}-(1)\]
By using, Heron’s formula, we can take the area of the triangle, when the length of all three sides of triangle are known:
\[\Delta =\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}-(2)\]
The figure shows the geometrical significance of \[\left( s-a \right),\left( s-b \right)\]and \[\left( s-c \right)\].
In equation (1) multiply the numerator & denominator by ‘s’.
\[{{r}_{1}}{{r}_{2}}{{r}_{3}}=\dfrac{{{\Delta }^{3}}\times s}{s\times \left( s-a \right)\left( s-b \right)\left( s-c \right)}-(3)\]
We know, \[\Delta =\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}\]
Squaring equation (2) on both sides
\[{{\Delta }^{2}}=s\left( s-a \right)\left( s-b \right)\left( s-c \right)-(4)\]
Substitute the value of (4) in (3)
\[=\dfrac{s{{\Delta }^{3}}}{{{\Delta }^{2}}}=s\Delta -(5)\]
Multiply numerator and denominator by ‘s’ in equation (5)
\[={{s}^{2}}\dfrac{\Delta }{s}\]
We know the radius in circle, r = a / (sum of lengths of triangle) = \[\dfrac{a}{s}\]
By substituting the same, we get
\[{{r}_{1}}{{r}_{2}}{{r}_{3}}=r{{s}^{2}}\].
Note: Remember to use heron’s formula to simplify equation (1).
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

