
Prove that : $\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = \dfrac{3}{{16}}$
Answer
520.2k+ views
Hint: Use trigonometry identity $2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$
and $2\cos A\sin B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)$
Here we have to prove Left hand side(LHS) equal to Right hand side(RHS).
Let’s take a left hand side of the question.
$LHS = \sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ $
As we know the value of $\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$
$ \Rightarrow \dfrac{{\sqrt 3 }}{2}\left( {\sin 20^\circ \sin 40^\circ \sin 80^\circ } \right)$
Now, multiply by 2 in numerator and denominator
$
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {2\sin 20^\circ \sin 40^\circ \sin 80^\circ } \right) \\
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\left( {2\sin 20^\circ \sin 40^\circ } \right)\sin 80^\circ } \right) \\
$
Use identity $2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$
\[
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\left( {\cos \left( {40^\circ - 20^\circ } \right) - \cos \left( {40^\circ + 20^\circ } \right)} \right)\sin 80^\circ } \right) \\
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\left( {\cos \left( {20^\circ } \right) - \cos \left( {60^\circ } \right)} \right)\sin 80^\circ } \right) \\
\therefore \cos 60^\circ = \dfrac{1}{2} \\
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\cos 20^\circ \sin 80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\left( {2\cos 20^\circ \sin 80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\]
Use identity $2\cos A\sin B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)$
\[
\Rightarrow \dfrac{{\sqrt 3 }}{8}\left( {\sin 100^\circ + \sin 60^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ + \dfrac{{\sqrt 3 }}{8}\sin 100^\circ - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\]
As we know $\sin \left( {180^\circ - A} \right) = \sin \left( A \right)$
\[
\Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ + \dfrac{{\sqrt 3 }}{8}\sin \left( {180^\circ - 80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ + \dfrac{{\sqrt 3 }}{8}\sin \left( {80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8} \times \dfrac{{\sqrt 3 }}{2} \\
\Rightarrow LHS = \dfrac{3}{{16}} \\
\]
So, $LHS = \dfrac{3}{{16}} = RHS$
Hence proved, $\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = \dfrac{3}{{16}}$
Note:Whenever we come across these types of problems first substitute the values of known trigonometric angles and collect the rest of trigonometric terms then use the product to sum formulas to convert unknown trigonometric angles to known trigonometric angles .
and $2\cos A\sin B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)$
Here we have to prove Left hand side(LHS) equal to Right hand side(RHS).
Let’s take a left hand side of the question.
$LHS = \sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ $
As we know the value of $\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$
$ \Rightarrow \dfrac{{\sqrt 3 }}{2}\left( {\sin 20^\circ \sin 40^\circ \sin 80^\circ } \right)$
Now, multiply by 2 in numerator and denominator
$
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {2\sin 20^\circ \sin 40^\circ \sin 80^\circ } \right) \\
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\left( {2\sin 20^\circ \sin 40^\circ } \right)\sin 80^\circ } \right) \\
$
Use identity $2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$
\[
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\left( {\cos \left( {40^\circ - 20^\circ } \right) - \cos \left( {40^\circ + 20^\circ } \right)} \right)\sin 80^\circ } \right) \\
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\left( {\cos \left( {20^\circ } \right) - \cos \left( {60^\circ } \right)} \right)\sin 80^\circ } \right) \\
\therefore \cos 60^\circ = \dfrac{1}{2} \\
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\cos 20^\circ \sin 80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\left( {2\cos 20^\circ \sin 80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\]
Use identity $2\cos A\sin B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)$
\[
\Rightarrow \dfrac{{\sqrt 3 }}{8}\left( {\sin 100^\circ + \sin 60^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ + \dfrac{{\sqrt 3 }}{8}\sin 100^\circ - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\]
As we know $\sin \left( {180^\circ - A} \right) = \sin \left( A \right)$
\[
\Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ + \dfrac{{\sqrt 3 }}{8}\sin \left( {180^\circ - 80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ + \dfrac{{\sqrt 3 }}{8}\sin \left( {80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8} \times \dfrac{{\sqrt 3 }}{2} \\
\Rightarrow LHS = \dfrac{3}{{16}} \\
\]
So, $LHS = \dfrac{3}{{16}} = RHS$
Hence proved, $\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = \dfrac{3}{{16}}$
Note:Whenever we come across these types of problems first substitute the values of known trigonometric angles and collect the rest of trigonometric terms then use the product to sum formulas to convert unknown trigonometric angles to known trigonometric angles .
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
According to Bernoullis equation the expression which class 11 physics CBSE

A solution of a substance X is used for white washing class 11 chemistry CBSE

10 examples of friction in our daily life

Simon Commission came to India in A 1927 B 1928 C 1929 class 11 social science CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

Can anyone list 10 advantages and disadvantages of friction
