
Prove that $\sin 3x+\sin 2x-\sin x=4\sin x\cos \dfrac{x}{2}\cos \dfrac{3x}{2}$.
Answer
582.9k+ views
Hint: Use the trigonometric formulas of $\left( \sin A-\sin B \right)$, value of $\sin 2x$to solve the expression. Take LHS of the expression and prove that the simplified expression of LHS is equal to RHS.
Complete step-by-step solution -
Given the expression, $\sin 3x+\sin 2x-\sin x=4\sin x\cos \dfrac{x}{2}\cos \dfrac{3x}{2}$.
Let us first take the LHS.
$LHS =\sin 3x +\sin 2x-\sin x$.
We know the formula, $\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
Let us put, A = 2x and B = x.
$\therefore \sin 3x+\left( \sin 2x-\sin x \right)=\sin 3x+2\cos \left( \dfrac{2x+x}{2} \right)\sin \left( \dfrac{2x-x}{2} \right)$
$=\sin 3x+2\cos \left( \dfrac{3x}{2} \right)\sin \left( \dfrac{x}{2} \right)$
We know that, $\sin 2x=2\sin x.\cos x$.
Similarly, $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$.
Now let us replace x with 3x.
$\begin{align}
& \therefore \sin 3x=2\sin \left( \dfrac{3x}{2} \right)\cos \left( \dfrac{3x}{2} \right) \\
& \therefore LHS=2\sin \left( \dfrac{3x}{2} \right)\cos \left( \dfrac{3x}{2} \right)+2\cos \left( \dfrac{3x}{2} \right)\sin \left( \dfrac{x}{2} \right) \\
\end{align}$
$=2\cos \left( \dfrac{3x}{2} \right)\left[ \sin \left( \dfrac{3x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right]$
We know that, $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$.
Put, $A=\dfrac{3x}{2}$and $B=\dfrac{x}{2}$.
$\therefore LHS=2\cos \left( \dfrac{3x}{2} \right)\left[ 2\sin \left( \dfrac{\dfrac{3x}{2}+\dfrac{x}{2}}{2} \right)\cos \left( \dfrac{\dfrac{3x}{2}-\dfrac{x}{2}}{2} \right) \right]$
$\begin{align}
& =2\cos \left( \dfrac{3x}{2} \right)\left[ 2\sin \left( \dfrac{4x}{4} \right)\cos \left( \dfrac{2x}{4} \right) \right] \\
& =2\cos \left( \dfrac{3x}{2} \right)\left[ 2\sin x\cos \left( \dfrac{x}{2} \right) \right] \\
& =4\cos \left( \dfrac{3x}{2} \right)\sin x\cos \dfrac{x}{2} \\
& =4\sin x\cos \left( \dfrac{x}{2} \right)\cos \left( \dfrac{3x}{2} \right) \\
\end{align}$
Hence, we proved that LHS = RHS.
Here from the question, $RHS=4\cos \left( \dfrac{x}{2} \right)\sin x\cos \left( \dfrac{3x}{2} \right)$.
Thus, we have proved.
Note: Remember the trigonometric formulae and identities to solve problems like these. Take $\left( \sin 2x-\sin x \right)$first because you will get a simplified expression and will be able to solve the expression more easily. We have used formulas like $\left( \sin A-\sin B \right)$, $\sin 2x,\left( \sin A+\sin B \right)$ to solve the expression. Therefore, remember the formulae.
Complete step-by-step solution -
Given the expression, $\sin 3x+\sin 2x-\sin x=4\sin x\cos \dfrac{x}{2}\cos \dfrac{3x}{2}$.
Let us first take the LHS.
$LHS =\sin 3x +\sin 2x-\sin x$.
We know the formula, $\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
Let us put, A = 2x and B = x.
$\therefore \sin 3x+\left( \sin 2x-\sin x \right)=\sin 3x+2\cos \left( \dfrac{2x+x}{2} \right)\sin \left( \dfrac{2x-x}{2} \right)$
$=\sin 3x+2\cos \left( \dfrac{3x}{2} \right)\sin \left( \dfrac{x}{2} \right)$
We know that, $\sin 2x=2\sin x.\cos x$.
Similarly, $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$.
Now let us replace x with 3x.
$\begin{align}
& \therefore \sin 3x=2\sin \left( \dfrac{3x}{2} \right)\cos \left( \dfrac{3x}{2} \right) \\
& \therefore LHS=2\sin \left( \dfrac{3x}{2} \right)\cos \left( \dfrac{3x}{2} \right)+2\cos \left( \dfrac{3x}{2} \right)\sin \left( \dfrac{x}{2} \right) \\
\end{align}$
$=2\cos \left( \dfrac{3x}{2} \right)\left[ \sin \left( \dfrac{3x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right]$
We know that, $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$.
Put, $A=\dfrac{3x}{2}$and $B=\dfrac{x}{2}$.
$\therefore LHS=2\cos \left( \dfrac{3x}{2} \right)\left[ 2\sin \left( \dfrac{\dfrac{3x}{2}+\dfrac{x}{2}}{2} \right)\cos \left( \dfrac{\dfrac{3x}{2}-\dfrac{x}{2}}{2} \right) \right]$
$\begin{align}
& =2\cos \left( \dfrac{3x}{2} \right)\left[ 2\sin \left( \dfrac{4x}{4} \right)\cos \left( \dfrac{2x}{4} \right) \right] \\
& =2\cos \left( \dfrac{3x}{2} \right)\left[ 2\sin x\cos \left( \dfrac{x}{2} \right) \right] \\
& =4\cos \left( \dfrac{3x}{2} \right)\sin x\cos \dfrac{x}{2} \\
& =4\sin x\cos \left( \dfrac{x}{2} \right)\cos \left( \dfrac{3x}{2} \right) \\
\end{align}$
Hence, we proved that LHS = RHS.
Here from the question, $RHS=4\cos \left( \dfrac{x}{2} \right)\sin x\cos \left( \dfrac{3x}{2} \right)$.
Thus, we have proved.
Note: Remember the trigonometric formulae and identities to solve problems like these. Take $\left( \sin 2x-\sin x \right)$first because you will get a simplified expression and will be able to solve the expression more easily. We have used formulas like $\left( \sin A-\sin B \right)$, $\sin 2x,\left( \sin A+\sin B \right)$ to solve the expression. Therefore, remember the formulae.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

