
Prove that \[\sin {48^0}\sec {42^0} + \cos {48^0}{\text{cosec}}{42^0} = 2\] .
Answer
583.2k+ views
Hint: In this type of problem, you take one side and solve it and get another side. Use a different conversion formula from the trigonometric identities in order to replace the different angles into one and finally cancel out the terms. Use the below formula to get the answer.
\[\sec \theta = \dfrac{1}{{\cos \theta }}\] and \[{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}\] .
\[\cos \left( {90 - \theta } \right) = \sin \theta ,\sin \left( {90 - \theta } \right) = \cos \theta \]
Complete step-by-step answer:
Taking LHS
Given \[\sin {48^0}\sec {42^0} + \cos {48^0}{\text{cosec}}{42^0}\]
We know that,
\[\sec \theta = \dfrac{1}{{\cos \theta }}\] and \[{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}\] .
Now given equation becomes,
\[
\Rightarrow \sin {48^0}\sec {42^0} + \cos {48^0}{\text{cosec}}{42^0} \\
\Rightarrow \dfrac{{\sin {{48}^0}}}{{\cos {{42}^0}}} + \dfrac{{\cos {{48}^0}}}{{\sin {{42}^0}}} \\
\]
We have,
\[\cos \left( {90 - \theta } \right) = \sin \theta ,\sin \left( {90 - \theta } \right) = \cos \theta \]
So let us use the formula for the derivation.
\[
\Rightarrow \dfrac{{\sin {{48}^0}}}{{\cos {{\left( {90 - 48} \right)}^0}}} + \dfrac{{\cos {{48}^0}}}{{\sin {{\left( {90 - 48} \right)}^0}}} \\
\Rightarrow \dfrac{{\sin {{48}^0}}}{{\sin {{48}^0}}} + \dfrac{{\cos {{48}^0}}}{{\cos {{48}^0}}} \\
\Rightarrow 1 + 1 \\
\Rightarrow 2 \\
\]
Hence, proved \[\sin {48^0}\sec {42^0} + \cos {48^0}{\text{cosec}}{42^0} = 2\] .
Note: In this problem, you take LHS and solve it by using trigonometric formulas and prove that LHS is equal to the RHS. Students must remember different conversion formulas such as conversion from sine to cosine and other using the angle at 90 degree to get the answer. Students must not try to find the values and solve it as it will be very lengthy.
\[\sec \theta = \dfrac{1}{{\cos \theta }}\] and \[{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}\] .
\[\cos \left( {90 - \theta } \right) = \sin \theta ,\sin \left( {90 - \theta } \right) = \cos \theta \]
Complete step-by-step answer:
Taking LHS
Given \[\sin {48^0}\sec {42^0} + \cos {48^0}{\text{cosec}}{42^0}\]
We know that,
\[\sec \theta = \dfrac{1}{{\cos \theta }}\] and \[{\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}\] .
Now given equation becomes,
\[
\Rightarrow \sin {48^0}\sec {42^0} + \cos {48^0}{\text{cosec}}{42^0} \\
\Rightarrow \dfrac{{\sin {{48}^0}}}{{\cos {{42}^0}}} + \dfrac{{\cos {{48}^0}}}{{\sin {{42}^0}}} \\
\]
We have,
\[\cos \left( {90 - \theta } \right) = \sin \theta ,\sin \left( {90 - \theta } \right) = \cos \theta \]
So let us use the formula for the derivation.
\[
\Rightarrow \dfrac{{\sin {{48}^0}}}{{\cos {{\left( {90 - 48} \right)}^0}}} + \dfrac{{\cos {{48}^0}}}{{\sin {{\left( {90 - 48} \right)}^0}}} \\
\Rightarrow \dfrac{{\sin {{48}^0}}}{{\sin {{48}^0}}} + \dfrac{{\cos {{48}^0}}}{{\cos {{48}^0}}} \\
\Rightarrow 1 + 1 \\
\Rightarrow 2 \\
\]
Hence, proved \[\sin {48^0}\sec {42^0} + \cos {48^0}{\text{cosec}}{42^0} = 2\] .
Note: In this problem, you take LHS and solve it by using trigonometric formulas and prove that LHS is equal to the RHS. Students must remember different conversion formulas such as conversion from sine to cosine and other using the angle at 90 degree to get the answer. Students must not try to find the values and solve it as it will be very lengthy.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

