Answer
Verified
498.6k+ views
Hint: Use the formula for \[\sin A+\sin B\]. Take \[\sin 50+\sin 10\], simplify it using the formula and substitute it back in the equation. Use the cosine function of trigonometry to solve the rest.
Complete step-by-step answer:
We need to prove that, \[\sin {{50}^{\circ }}-\sin {{70}^{\circ }}+\sin {{10}^{\circ }}=0-\left( 1 \right)\]
We know the formula of \[\sin A+\sin B\].
\[\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\]
Let us take \[\sin 50+\sin 10\], where A=50 and B=10.
\[\sin 50+\sin 10=2\sin \left( \dfrac{50+10}{2} \right)\cos \left( \dfrac{50-10}{2} \right)\]
\[\begin{align}
& \sin 50+\sin 10=2\sin \left( \dfrac{60}{2} \right)\cos \left( \dfrac{40}{2} \right) \\
& \sin 50+\sin 10=2\sin 30\cos 20 \\
\end{align}\]
We know the value of, \[\sin 30=\dfrac{1}{2}\]
\[\begin{align}
&\therefore 2\sin 30\cos 20=2\times \dfrac{1}{2}\times \cos 20=\cos 20 \\
&\therefore \sin 50+\sin 10=\cos 20-(2) \\
\end{align}\]
Put, \[\sin 50+\sin 10=\cos 20\]in equation (1).
\[\therefore \cos 20-\sin 70-(4)\]
By using the trigonometric cosine function,
\[\begin{align}
& \cos \left( 90-\theta \right)=\sin \theta \\
& \cos 20=\cos \left( 90-70 \right)=\sin 70 \\
\end{align}\]
\[\therefore \]We got the value of \[\cos 20=\sin 70\].
Substitute \[\cos 20=\sin 70\]in equation (4), we get
\[\sin 70-\sin 70=0\]
\[\therefore \]We proved that \[\sin {{50}^{\circ }}-\sin {{70}^{\circ }}+\sin {{10}^{\circ }}=0\]
Note: We can also solve by using the formulae,
\[\begin{align}
& \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B \\
& \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B \\
\end{align}\]
\[\sin {{50}^{\circ }}-\sin {{70}^{\circ }}+\sin {{10}^{\circ }}\]can be written as,
\[\begin{align}
& \sin \left( 60-10 \right)=\sin 60\cos 10-\cos 60\sin 10 \\
& \sin \left( 60+10 \right)=\sin 60\cos 10+\cos 60\sin 10 \\
\end{align}\]
\[\therefore \sin \left( 60-10 \right)-\sin \left( 60+10 \right)+\sin 10=\sin 60\cos 10-\cos 60\sin 10-\sin 60\cos 10-\cos 60\sin 10+\sin 10\]
[Cancel out like terms]
\[\begin{align}
& =-2\cos 60\sin 10+\sin 10 \\
& \because \cos 60=\dfrac{1}{2} \\
& =-2\times \dfrac{1}{2}\sin 10+\sin 10=-\sin 10+\sin 10=0 \\
& \therefore \sin 50-\sin 70+\sin 10=0 \\
\end{align}\]
Complete step-by-step answer:
We need to prove that, \[\sin {{50}^{\circ }}-\sin {{70}^{\circ }}+\sin {{10}^{\circ }}=0-\left( 1 \right)\]
We know the formula of \[\sin A+\sin B\].
\[\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\]
Let us take \[\sin 50+\sin 10\], where A=50 and B=10.
\[\sin 50+\sin 10=2\sin \left( \dfrac{50+10}{2} \right)\cos \left( \dfrac{50-10}{2} \right)\]
\[\begin{align}
& \sin 50+\sin 10=2\sin \left( \dfrac{60}{2} \right)\cos \left( \dfrac{40}{2} \right) \\
& \sin 50+\sin 10=2\sin 30\cos 20 \\
\end{align}\]
We know the value of, \[\sin 30=\dfrac{1}{2}\]
\[\begin{align}
&\therefore 2\sin 30\cos 20=2\times \dfrac{1}{2}\times \cos 20=\cos 20 \\
&\therefore \sin 50+\sin 10=\cos 20-(2) \\
\end{align}\]
Put, \[\sin 50+\sin 10=\cos 20\]in equation (1).
\[\therefore \cos 20-\sin 70-(4)\]
By using the trigonometric cosine function,
\[\begin{align}
& \cos \left( 90-\theta \right)=\sin \theta \\
& \cos 20=\cos \left( 90-70 \right)=\sin 70 \\
\end{align}\]
\[\therefore \]We got the value of \[\cos 20=\sin 70\].
Substitute \[\cos 20=\sin 70\]in equation (4), we get
\[\sin 70-\sin 70=0\]
\[\therefore \]We proved that \[\sin {{50}^{\circ }}-\sin {{70}^{\circ }}+\sin {{10}^{\circ }}=0\]
Note: We can also solve by using the formulae,
\[\begin{align}
& \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B \\
& \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B \\
\end{align}\]
\[\sin {{50}^{\circ }}-\sin {{70}^{\circ }}+\sin {{10}^{\circ }}\]can be written as,
\[\begin{align}
& \sin \left( 60-10 \right)=\sin 60\cos 10-\cos 60\sin 10 \\
& \sin \left( 60+10 \right)=\sin 60\cos 10+\cos 60\sin 10 \\
\end{align}\]
\[\therefore \sin \left( 60-10 \right)-\sin \left( 60+10 \right)+\sin 10=\sin 60\cos 10-\cos 60\sin 10-\sin 60\cos 10-\cos 60\sin 10+\sin 10\]
[Cancel out like terms]
\[\begin{align}
& =-2\cos 60\sin 10+\sin 10 \\
& \because \cos 60=\dfrac{1}{2} \\
& =-2\times \dfrac{1}{2}\sin 10+\sin 10=-\sin 10+\sin 10=0 \\
& \therefore \sin 50-\sin 70+\sin 10=0 \\
\end{align}\]
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE