
Prove that $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = \dfrac{{\sin 3\theta }}{4}$.
Answer
519.1k+ views
Hint: Assume $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X$ and then use the trigonometric formula, $\sin (A + B) = \sin A\cos B + \cos A\sin B$ and $\sin (A - B) = \sin A\cos B - \cos A\sin B$ to solve the question.
Complete step-by-step answer:
We have been given to prove - $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = \dfrac{{\sin 3\theta }}{4}$.
Assuming $LHS = \sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X$
Therefore, $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X$.
Now using the trigonometric formula, $\sin (A + B) = \sin A\cos B + \cos A\sin B$ and $\sin (A - B) = \sin A\cos B - \cos A\sin B$, we can write-
$
\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X \\
\Rightarrow (\sin {60^ \circ }\cos \theta + \cos {60^ \circ }\sin \theta ).\sin \theta .(\sin {60^ \circ }\cos \theta - \cos {60^ \circ }\sin \theta ) = X \\
\Rightarrow ({\sin ^2}{60^ \circ }{\cos ^2}\theta - {\cos ^2}{60^ \circ }{\sin ^2}\theta )\sin \theta = X \\
\Rightarrow \left( {\dfrac{3}{4}{{\cos }^2}\theta - \dfrac{{{{\sin }^2}\theta }}{4}} \right)\sin \theta = X\{ \because \sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2},\cos {60^ \circ } = \dfrac{1}{2}\} \\
\Rightarrow \left( {\dfrac{3}{4}(1 - {{\sin }^2}\theta ) - \dfrac{{{{\sin }^2}\theta }}{4}} \right)\sin \theta = X \\
\Rightarrow \left( {\dfrac{3}{4} - {{\sin }^2}\theta } \right)\sin \theta = X \\
\Rightarrow (3\sin \theta - 4{\sin ^3}\theta )\dfrac{1}{4} = X \\
\{ \because 3\sin \theta - 4{\sin ^3}\theta = \sin 3\theta \} \\
\Rightarrow \dfrac{{\sin 3\theta }}{4} = X = RHS \\
$
Therefore, LHS = RHS {Hence Proved}.
Note: Whenever such types of questions appear, first expand the term $\sin (60 - \theta ),\sin (60 + \theta )$ by using the trigonometric formula –$\sin (A - B) = \sin A\cos B - \cos A\sin B$ and the trigonometric formula $\sin (A + B) = \sin A\cos B + \cos A\sin B$, and then simplify the expression to prove it equal to the RHS.
Complete step-by-step answer:
We have been given to prove - $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = \dfrac{{\sin 3\theta }}{4}$.
Assuming $LHS = \sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X$
Therefore, $\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X$.
Now using the trigonometric formula, $\sin (A + B) = \sin A\cos B + \cos A\sin B$ and $\sin (A - B) = \sin A\cos B - \cos A\sin B$, we can write-
$
\sin (60 - \theta ).\sin \theta .\sin (60 + \theta ) = X \\
\Rightarrow (\sin {60^ \circ }\cos \theta + \cos {60^ \circ }\sin \theta ).\sin \theta .(\sin {60^ \circ }\cos \theta - \cos {60^ \circ }\sin \theta ) = X \\
\Rightarrow ({\sin ^2}{60^ \circ }{\cos ^2}\theta - {\cos ^2}{60^ \circ }{\sin ^2}\theta )\sin \theta = X \\
\Rightarrow \left( {\dfrac{3}{4}{{\cos }^2}\theta - \dfrac{{{{\sin }^2}\theta }}{4}} \right)\sin \theta = X\{ \because \sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2},\cos {60^ \circ } = \dfrac{1}{2}\} \\
\Rightarrow \left( {\dfrac{3}{4}(1 - {{\sin }^2}\theta ) - \dfrac{{{{\sin }^2}\theta }}{4}} \right)\sin \theta = X \\
\Rightarrow \left( {\dfrac{3}{4} - {{\sin }^2}\theta } \right)\sin \theta = X \\
\Rightarrow (3\sin \theta - 4{\sin ^3}\theta )\dfrac{1}{4} = X \\
\{ \because 3\sin \theta - 4{\sin ^3}\theta = \sin 3\theta \} \\
\Rightarrow \dfrac{{\sin 3\theta }}{4} = X = RHS \\
$
Therefore, LHS = RHS {Hence Proved}.
Note: Whenever such types of questions appear, first expand the term $\sin (60 - \theta ),\sin (60 + \theta )$ by using the trigonometric formula –$\sin (A - B) = \sin A\cos B - \cos A\sin B$ and the trigonometric formula $\sin (A + B) = \sin A\cos B + \cos A\sin B$, and then simplify the expression to prove it equal to the RHS.
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

What is the missing number in the sequence 259142027 class 10 maths CBSE

10 examples of evaporation in daily life with explanations

State and prove the Pythagoras theorem-class-10-maths-CBSE

