
Prove that $\sqrt 2 $ is an irrational number?
Answer
582.9k+ views
Hint: In this question, we will use the contradiction method of solving the question. First assume that the given number is a rational number of the $\dfrac{a}{b}$ where a and b have no common factor other than 1 and b$ \ne $ 0. After this we follow a procedure to contradict our assumption.
Complete step-by-step answer:
The given number is$\sqrt 2 $.
Now suppose that the given number is a rational number of the form $\dfrac{{\text{a}}}{{\text{b}}}$, where a and b have no common factor other than 1 and b$ \ne $ 0.
$\therefore $ .$\sqrt 2 $ =$\dfrac{{\text{a}}}{{\text{b}}}$
On squaring both sides, we get:
\[{\left( {\sqrt 2 } \right)^2} = \dfrac{{{{\text{a}}^2}}}{{{{\text{b}}^2}}}\]
On further solving, we have:
\[ \Rightarrow 2 = \dfrac{{{{\text{a}}^2}}}{{{{\text{b}}^2}}}\]
\[ \Rightarrow 2{{\text{b}}^2} = {{\text{a}}^2}\]
$\because $ 2 divides ${{\text{b}}^2}$.
$\therefore $ It will also divide ${{\text{a}}^2}$and hence it will divide ‘a’.
Now, let a =2k
Putting the value of ‘a’ in above equation, we get:
$2{{\text{b}}^2} = {\left( {2{\text{k}}} \right)^2}$
On further solving, we get:
$2{{\text{b}}^2} = 4{{\text{k}}^2}$
$ \Rightarrow {{\text{b}}^2} = 2{{\text{k}}^2}$
$\because $ 2 divides ${{\text{k}}^2}$.
$\therefore $ It will also divide ${{\text{b}}^2}$and hence it will divide ‘b’.
Therefore, we can say that 2 is the common factor of both ‘a’ and ‘b’.
This contradicts our assumption that ‘a’ and ‘b’ have no common factor other than 1
Hence, the number $\sqrt 2 $ is an irrational number.
Note: Solving such forms of problems requires a determined approach of making an assumption which is the exact opposite of what is being asked and then contradicting that assumption therefore reaching to the proof. You should know that the product of a rational and an irrational number is always irrational. For example- $2\sqrt 2 $ is an irrational number.
Complete step-by-step answer:
The given number is$\sqrt 2 $.
Now suppose that the given number is a rational number of the form $\dfrac{{\text{a}}}{{\text{b}}}$, where a and b have no common factor other than 1 and b$ \ne $ 0.
$\therefore $ .$\sqrt 2 $ =$\dfrac{{\text{a}}}{{\text{b}}}$
On squaring both sides, we get:
\[{\left( {\sqrt 2 } \right)^2} = \dfrac{{{{\text{a}}^2}}}{{{{\text{b}}^2}}}\]
On further solving, we have:
\[ \Rightarrow 2 = \dfrac{{{{\text{a}}^2}}}{{{{\text{b}}^2}}}\]
\[ \Rightarrow 2{{\text{b}}^2} = {{\text{a}}^2}\]
$\because $ 2 divides ${{\text{b}}^2}$.
$\therefore $ It will also divide ${{\text{a}}^2}$and hence it will divide ‘a’.
Now, let a =2k
Putting the value of ‘a’ in above equation, we get:
$2{{\text{b}}^2} = {\left( {2{\text{k}}} \right)^2}$
On further solving, we get:
$2{{\text{b}}^2} = 4{{\text{k}}^2}$
$ \Rightarrow {{\text{b}}^2} = 2{{\text{k}}^2}$
$\because $ 2 divides ${{\text{k}}^2}$.
$\therefore $ It will also divide ${{\text{b}}^2}$and hence it will divide ‘b’.
Therefore, we can say that 2 is the common factor of both ‘a’ and ‘b’.
This contradicts our assumption that ‘a’ and ‘b’ have no common factor other than 1
Hence, the number $\sqrt 2 $ is an irrational number.
Note: Solving such forms of problems requires a determined approach of making an assumption which is the exact opposite of what is being asked and then contradicting that assumption therefore reaching to the proof. You should know that the product of a rational and an irrational number is always irrational. For example- $2\sqrt 2 $ is an irrational number.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE


