Answer
Verified
404.6k+ views
Hint: Here we have to represent $\sqrt 6 $ as fraction of two integers, and we have to represent that these two integers have common factor at lowest form and both cannot be even.By contradiction method (i.e assuming negation statement and proving that statement wrong) have to prove it is an irrational number.
“Complete step-by-step answer:”
This problem can be solved by a contradiction method i.e assuming it is a rational number.
The following proof is of contradiction
Let us assume that $\sqrt 6 $ is rational number
Then it can be represented as factor of two integers
Let the lowest terms representation be $\sqrt 6 = \dfrac{a}{b}$, where $b \ne 0$
$\therefore {a^2} = 6{b^2}$ …… (1)
From above ${a^2}$ is even, if it is even then ‘a’ should also be even
$ \Rightarrow a = 2c$ (c is constant and 2c is an even number)
Squaring both the sides of the above equation
${a^2} = 4{c^2}$ …… (2)
From equation (1) and (2)
$4{c^2} = 6{b^2}$ and $2{c^2} = 3{b^2}$
From above $3{b^2}$ is even, if it is even then ${b^2}$ should be even and also ‘b’ again should be even
Therefore, a and b have some common factors
But a and b were in lowest form and both cannot be even.
Hence assumption was wrong and hence$\sqrt 6 $ is an irrational number.
NOTE: $\sqrt 6 = \dfrac{a}{b}$ , this representation is in lowest terms and hence, a and b have no common factors.So it is an irrational number.
“Complete step-by-step answer:”
This problem can be solved by a contradiction method i.e assuming it is a rational number.
The following proof is of contradiction
Let us assume that $\sqrt 6 $ is rational number
Then it can be represented as factor of two integers
Let the lowest terms representation be $\sqrt 6 = \dfrac{a}{b}$, where $b \ne 0$
$\therefore {a^2} = 6{b^2}$ …… (1)
From above ${a^2}$ is even, if it is even then ‘a’ should also be even
$ \Rightarrow a = 2c$ (c is constant and 2c is an even number)
Squaring both the sides of the above equation
${a^2} = 4{c^2}$ …… (2)
From equation (1) and (2)
$4{c^2} = 6{b^2}$ and $2{c^2} = 3{b^2}$
From above $3{b^2}$ is even, if it is even then ${b^2}$ should be even and also ‘b’ again should be even
Therefore, a and b have some common factors
But a and b were in lowest form and both cannot be even.
Hence assumption was wrong and hence$\sqrt 6 $ is an irrational number.
NOTE: $\sqrt 6 = \dfrac{a}{b}$ , this representation is in lowest terms and hence, a and b have no common factors.So it is an irrational number.
Recently Updated Pages
A uniform rod of length L and mass M is pivoted at class 11 physics JEE_Main
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
The number of moles of KMnO4 that will be needed to class 11 chemistry JEE_Main
The oxidation process involves class 11 chemistry JEE_Main
A car starts from rest to cover a distance s The coefficient class 11 physics JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE