
Prove that: $\tan 225{}^\circ \cot 405{}^\circ +\tan 765{}^\circ \cot 675{}^\circ =0$.
Answer
593.7k+ views
Hint: For solving this problem, first converting the angle given in the problem statement in the range 0 to 90 degree by using suitable trigonometric properties. Now, we use the trigonometric table of values to prove the equivalence of both the sides.
Complete step-by-step answer:
Some of the important trigonometric formulas used in solving this problem are:
\[\begin{align}
& \tan \left( 360+\theta \right)=\tan \theta \\
& \tan \left( 360-\theta \right)=-\tan \theta \\
& \tan \left( 180-\theta \right)=-\tan \theta \\
& \tan \left( 180+\theta \right)=\tan \theta \\
& \cot \left( 360+\theta \right)=\cot \theta \\
& \cot \left( 360-\theta \right)=-\cot \theta \\
\end{align}\]
The specific value of functions of tan and cot which are useful are:
$\begin{align}
& \tan 45{}^\circ =1 \\
& \cot 45{}^\circ =1 \\
\end{align}$
According to the problem statement, we consider the left-hand side of the equation for proving equivalence of both sides. First, we convert the $\tan 225{}^\circ ,\cot 405{}^\circ ,\tan 765{}^\circ \text{ and }\cot 675{}^\circ $ by using the formula\[\cot \left( 360+\theta \right)=\cot \theta ,\cot \left( 360-\theta \right)=-\cot \theta ,\tan \left( 360+\theta \right)=\tan \theta \text{ and }\tan \left( 360-\theta \right)=-\tan \theta \].
$\begin{align}
& \tan 225{}^\circ =\tan \left( 360-135 \right){}^\circ \\
& \therefore \tan 225{}^\circ =-\tan \left( 135 \right){}^\circ \\
& \cot 405{}^\circ =\cot \left( 360+45 \right){}^\circ \\
& \therefore \cot 405{}^\circ =\cot \left( 45 \right){}^\circ \\
& \tan 765{}^\circ =\tan \left( 2\times 360+45 \right){}^\circ \\
& \therefore \tan 765{}^\circ =\tan \left( 45 \right){}^\circ \\
& \cot 675{}^\circ =\cot \left( 2\times 360-45 \right){}^\circ \\
& \therefore \cot 675{}^\circ =-\cot \left( 45 \right){}^\circ \\
\end{align}$
On replacing the above obtained values in the left-hand side, the required expression reduces to: $\Rightarrow -\tan 135{}^\circ \cot 45{}^\circ +\tan 45{}^\circ \left( -\cot 45{}^\circ \right)$
Now, we try to convert the above functions into the functions given in the form of table having respective angles between the range of 0 to 90 in degrees. For doing so, we use the formulas \[\tan \left( 180-\theta \right)=-\tan \theta \]. Now, we get
$\begin{align}
& \tan 135{}^\circ =\tan \left( 180-45 \right){}^\circ \\
& \therefore \tan 135{}^\circ =-\tan \left( 45 \right){}^\circ \\
\end{align}$
On replacing the above obtained values in the left-hand side, the required expression reduces to: $\begin{align}
& \Rightarrow -\left( -\tan \left( 45 \right){}^\circ \right)\cot 45{}^\circ +\tan 45{}^\circ \left( -\cot 45{}^\circ \right) \\
& \Rightarrow \tan 45{}^\circ \cot 45{}^\circ -\tan 45{}^\circ \cot 45{}^\circ \\
\end{align}$
Now, putting the values from the table, we get
$\begin{align}
& \Rightarrow 1\times 1-1\times 1 \\
& \Rightarrow 1-1 \\
& \Rightarrow 0 \\
\end{align}$
Hence, we proved the equivalence of both sides by considering the expression of the left side.
Note: Students must remember the trigonometric table and the trigonometric formulas associated with different functions. The conversion of the respective function should be done carefully, and the magnitude of the required quantity must be copied correctly in the final expression for avoiding calculation error.
Complete step-by-step answer:
Some of the important trigonometric formulas used in solving this problem are:
\[\begin{align}
& \tan \left( 360+\theta \right)=\tan \theta \\
& \tan \left( 360-\theta \right)=-\tan \theta \\
& \tan \left( 180-\theta \right)=-\tan \theta \\
& \tan \left( 180+\theta \right)=\tan \theta \\
& \cot \left( 360+\theta \right)=\cot \theta \\
& \cot \left( 360-\theta \right)=-\cot \theta \\
\end{align}\]
The specific value of functions of tan and cot which are useful are:
$\begin{align}
& \tan 45{}^\circ =1 \\
& \cot 45{}^\circ =1 \\
\end{align}$
According to the problem statement, we consider the left-hand side of the equation for proving equivalence of both sides. First, we convert the $\tan 225{}^\circ ,\cot 405{}^\circ ,\tan 765{}^\circ \text{ and }\cot 675{}^\circ $ by using the formula\[\cot \left( 360+\theta \right)=\cot \theta ,\cot \left( 360-\theta \right)=-\cot \theta ,\tan \left( 360+\theta \right)=\tan \theta \text{ and }\tan \left( 360-\theta \right)=-\tan \theta \].
$\begin{align}
& \tan 225{}^\circ =\tan \left( 360-135 \right){}^\circ \\
& \therefore \tan 225{}^\circ =-\tan \left( 135 \right){}^\circ \\
& \cot 405{}^\circ =\cot \left( 360+45 \right){}^\circ \\
& \therefore \cot 405{}^\circ =\cot \left( 45 \right){}^\circ \\
& \tan 765{}^\circ =\tan \left( 2\times 360+45 \right){}^\circ \\
& \therefore \tan 765{}^\circ =\tan \left( 45 \right){}^\circ \\
& \cot 675{}^\circ =\cot \left( 2\times 360-45 \right){}^\circ \\
& \therefore \cot 675{}^\circ =-\cot \left( 45 \right){}^\circ \\
\end{align}$
On replacing the above obtained values in the left-hand side, the required expression reduces to: $\Rightarrow -\tan 135{}^\circ \cot 45{}^\circ +\tan 45{}^\circ \left( -\cot 45{}^\circ \right)$
Now, we try to convert the above functions into the functions given in the form of table having respective angles between the range of 0 to 90 in degrees. For doing so, we use the formulas \[\tan \left( 180-\theta \right)=-\tan \theta \]. Now, we get
$\begin{align}
& \tan 135{}^\circ =\tan \left( 180-45 \right){}^\circ \\
& \therefore \tan 135{}^\circ =-\tan \left( 45 \right){}^\circ \\
\end{align}$
On replacing the above obtained values in the left-hand side, the required expression reduces to: $\begin{align}
& \Rightarrow -\left( -\tan \left( 45 \right){}^\circ \right)\cot 45{}^\circ +\tan 45{}^\circ \left( -\cot 45{}^\circ \right) \\
& \Rightarrow \tan 45{}^\circ \cot 45{}^\circ -\tan 45{}^\circ \cot 45{}^\circ \\
\end{align}$
Now, putting the values from the table, we get
$\begin{align}
& \Rightarrow 1\times 1-1\times 1 \\
& \Rightarrow 1-1 \\
& \Rightarrow 0 \\
\end{align}$
Hence, we proved the equivalence of both sides by considering the expression of the left side.
Note: Students must remember the trigonometric table and the trigonometric formulas associated with different functions. The conversion of the respective function should be done carefully, and the magnitude of the required quantity must be copied correctly in the final expression for avoiding calculation error.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

