Answer
Verified
468.9k+ views
Hint: Here to prove this question we must know property which is mentioned below: -
$\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Complete step-by-step answer:
We know the value of $\tan {45^ \circ } = 1$, so here in this question we will use this value to prove our question.
$\tan {45^ \circ } = 1$
We can write $\tan {45^ \circ }$ as $\tan ({36^ \circ } + {9^ \circ })$ so that property $\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ can be applied.
$ \Rightarrow \tan ({36^ \circ } + {9^ \circ }) = \dfrac{{\tan {{36}^ \circ } + \tan {9^ \circ }}}{{1 - \tan {{36}^ \circ }\tan {9^ \circ }}} = 1$
$ \Rightarrow \dfrac{{\tan {{36}^ \circ } + \tan {9^ \circ }}}{{1 - \tan {{36}^ \circ }\tan {9^ \circ }}} = 1$ (Now in next step we will cross multiply)
\[ \Rightarrow \tan {36^ \circ } + \tan {9^ \circ } = 1 - \tan {36^ \circ }\tan {9^ \circ }\]
Rearranging the terms and taking trigonometric functions in one side.
\[\therefore \tan {36^ \circ } + \tan {9^ \circ } + \tan {36^ \circ }\tan {9^ \circ } = 1\]
Hence it is proved that $\tan {36^ \circ } + \tan {9^ \circ } + \tan {36^ \circ }\tan {9^ \circ } = 1$
Additional Information: Trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side length. Most widely used trigonometric functions are sine, cosine and tangent. The angles of sine, cosine and tangent are the primary classification of functions of trigonometry. And the functions which are cotangent, secant and cosecant can be derived from the primary functions. Behaviour of all these functions in four quadrants is as follows: -
First quadrant = All trigonometric functions are positive (sine, cosine, tan, sec, cosec, cot)
Second quadrant=Positive (sine, cosec) Negative (cosine, tan, sec, cot)
Third quadrant= Positive (tan, cot) Negative (sine, cosine, sec, cosec)
Fourth quadrant= Positive (cosine, sec) Negative (sine, tan, cot, cosec)
Note: Students may likely to make one common mistake in this question is that they will try to think the direct value of given trigonometric functions which is a very wrong way to approach because one cannot memorise too many values rather some specific values should be remembered to solve these types of questions. Some of the values are mentioned below: -
$\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
$\tan {60^ \circ } = \sqrt 3 $
$\tan {45^ \circ } = 1$
\[\tan {90^ \circ }\]= infinity
$\tan {180^ \circ } = 0$
$\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Complete step-by-step answer:
We know the value of $\tan {45^ \circ } = 1$, so here in this question we will use this value to prove our question.
$\tan {45^ \circ } = 1$
We can write $\tan {45^ \circ }$ as $\tan ({36^ \circ } + {9^ \circ })$ so that property $\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ can be applied.
$ \Rightarrow \tan ({36^ \circ } + {9^ \circ }) = \dfrac{{\tan {{36}^ \circ } + \tan {9^ \circ }}}{{1 - \tan {{36}^ \circ }\tan {9^ \circ }}} = 1$
$ \Rightarrow \dfrac{{\tan {{36}^ \circ } + \tan {9^ \circ }}}{{1 - \tan {{36}^ \circ }\tan {9^ \circ }}} = 1$ (Now in next step we will cross multiply)
\[ \Rightarrow \tan {36^ \circ } + \tan {9^ \circ } = 1 - \tan {36^ \circ }\tan {9^ \circ }\]
Rearranging the terms and taking trigonometric functions in one side.
\[\therefore \tan {36^ \circ } + \tan {9^ \circ } + \tan {36^ \circ }\tan {9^ \circ } = 1\]
Hence it is proved that $\tan {36^ \circ } + \tan {9^ \circ } + \tan {36^ \circ }\tan {9^ \circ } = 1$
Additional Information: Trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side length. Most widely used trigonometric functions are sine, cosine and tangent. The angles of sine, cosine and tangent are the primary classification of functions of trigonometry. And the functions which are cotangent, secant and cosecant can be derived from the primary functions. Behaviour of all these functions in four quadrants is as follows: -
First quadrant = All trigonometric functions are positive (sine, cosine, tan, sec, cosec, cot)
Second quadrant=Positive (sine, cosec) Negative (cosine, tan, sec, cot)
Third quadrant= Positive (tan, cot) Negative (sine, cosine, sec, cosec)
Fourth quadrant= Positive (cosine, sec) Negative (sine, tan, cot, cosec)
Note: Students may likely to make one common mistake in this question is that they will try to think the direct value of given trigonometric functions which is a very wrong way to approach because one cannot memorise too many values rather some specific values should be remembered to solve these types of questions. Some of the values are mentioned below: -
$\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$
$\tan {60^ \circ } = \sqrt 3 $
$\tan {45^ \circ } = 1$
\[\tan {90^ \circ }\]= infinity
$\tan {180^ \circ } = 0$
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE