
Prove that the equation of circle in the$z$plane can be written in the form$\alpha z\overline z + \overline \beta z + \beta \overline z + c = 0$. Deduce the equation of the line.
A. $\overline \beta z + \beta \overline z + c = 0$
B. $\overline \beta z - \beta \overline z + c = 0$
C. $\overline \beta z + \beta \overline z - c = 0$
D. None of these
Answer
520.5k+ views
Hint: Consider the standard form of circle in coordinate geometry then use basic formulas of complex numbers to convert it into complex form.
We know that, if$z = x + iy$then$\overline z = x - iy$and$x = \dfrac{{z + \overline z }}{2},y = \dfrac{{z - \overline z }}{{2i}},z\overline z = |z{|^2} = {x^2} + {y^2}$. The standard equation of the circle is$\alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0$.We’ll use above mentioned formula to solve further as follows:
\[
\alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0 \\
\Rightarrow \alpha (z\overline z ) + g(z + \overline z ) + f(\dfrac{{z - \overline z }}{i}) + c = 0{\text{ }}[{x^2} + {y^2} = z\overline z ,\dfrac{{z + \overline z }}{2} = x,\dfrac{{z - \overline z }}{{2i}} = y] \\
\Rightarrow \alpha (z\overline z ) + g(z + \overline z ) - if(z - \overline z ) + c = 0 \\
\Rightarrow \alpha (z\overline z ) + (g - if)z + (g + if)\overline z + c = 0 \\
\Rightarrow \alpha (z\overline z ) + (\overline \beta )z + (\beta )\overline z + c = 0{\text{ }}[\overline \beta = g - if,\beta = g + if] \\
\Rightarrow \alpha z\overline z + \overline \beta z + \beta \overline z + c = 0 \\
\]
It is in the same form as the given equation. Now observe from the standard form of the circle that if we put$\alpha = 0$then we’ll get the equation of a straight line. Hence putting$\alpha = 0$in the given equation we’ll get$\overline \beta z + \beta \overline z + c = 0$. Hence option A is the correct option.
Note: The hack in this question was to observe that, what’s the relation between the equation of a circle and straight line in the coordinate plane.
We know that, if$z = x + iy$then$\overline z = x - iy$and$x = \dfrac{{z + \overline z }}{2},y = \dfrac{{z - \overline z }}{{2i}},z\overline z = |z{|^2} = {x^2} + {y^2}$. The standard equation of the circle is$\alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0$.We’ll use above mentioned formula to solve further as follows:
\[
\alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0 \\
\Rightarrow \alpha (z\overline z ) + g(z + \overline z ) + f(\dfrac{{z - \overline z }}{i}) + c = 0{\text{ }}[{x^2} + {y^2} = z\overline z ,\dfrac{{z + \overline z }}{2} = x,\dfrac{{z - \overline z }}{{2i}} = y] \\
\Rightarrow \alpha (z\overline z ) + g(z + \overline z ) - if(z - \overline z ) + c = 0 \\
\Rightarrow \alpha (z\overline z ) + (g - if)z + (g + if)\overline z + c = 0 \\
\Rightarrow \alpha (z\overline z ) + (\overline \beta )z + (\beta )\overline z + c = 0{\text{ }}[\overline \beta = g - if,\beta = g + if] \\
\Rightarrow \alpha z\overline z + \overline \beta z + \beta \overline z + c = 0 \\
\]
It is in the same form as the given equation. Now observe from the standard form of the circle that if we put$\alpha = 0$then we’ll get the equation of a straight line. Hence putting$\alpha = 0$in the given equation we’ll get$\overline \beta z + \beta \overline z + c = 0$. Hence option A is the correct option.
Note: The hack in this question was to observe that, what’s the relation between the equation of a circle and straight line in the coordinate plane.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE

How did silk routes link the world Explain with three class 11 social science CBSE

What are the various challenges faced by political class 11 social science CBSE
