Answer
Verified
498.6k+ views
Hint: Consider the standard form of circle in coordinate geometry then use basic formulas of complex numbers to convert it into complex form.
We know that, if$z = x + iy$then$\overline z = x - iy$and$x = \dfrac{{z + \overline z }}{2},y = \dfrac{{z - \overline z }}{{2i}},z\overline z = |z{|^2} = {x^2} + {y^2}$. The standard equation of the circle is$\alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0$.We’ll use above mentioned formula to solve further as follows:
\[
\alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0 \\
\Rightarrow \alpha (z\overline z ) + g(z + \overline z ) + f(\dfrac{{z - \overline z }}{i}) + c = 0{\text{ }}[{x^2} + {y^2} = z\overline z ,\dfrac{{z + \overline z }}{2} = x,\dfrac{{z - \overline z }}{{2i}} = y] \\
\Rightarrow \alpha (z\overline z ) + g(z + \overline z ) - if(z - \overline z ) + c = 0 \\
\Rightarrow \alpha (z\overline z ) + (g - if)z + (g + if)\overline z + c = 0 \\
\Rightarrow \alpha (z\overline z ) + (\overline \beta )z + (\beta )\overline z + c = 0{\text{ }}[\overline \beta = g - if,\beta = g + if] \\
\Rightarrow \alpha z\overline z + \overline \beta z + \beta \overline z + c = 0 \\
\]
It is in the same form as the given equation. Now observe from the standard form of the circle that if we put$\alpha = 0$then we’ll get the equation of a straight line. Hence putting$\alpha = 0$in the given equation we’ll get$\overline \beta z + \beta \overline z + c = 0$. Hence option A is the correct option.
Note: The hack in this question was to observe that, what’s the relation between the equation of a circle and straight line in the coordinate plane.
We know that, if$z = x + iy$then$\overline z = x - iy$and$x = \dfrac{{z + \overline z }}{2},y = \dfrac{{z - \overline z }}{{2i}},z\overline z = |z{|^2} = {x^2} + {y^2}$. The standard equation of the circle is$\alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0$.We’ll use above mentioned formula to solve further as follows:
\[
\alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0 \\
\Rightarrow \alpha (z\overline z ) + g(z + \overline z ) + f(\dfrac{{z - \overline z }}{i}) + c = 0{\text{ }}[{x^2} + {y^2} = z\overline z ,\dfrac{{z + \overline z }}{2} = x,\dfrac{{z - \overline z }}{{2i}} = y] \\
\Rightarrow \alpha (z\overline z ) + g(z + \overline z ) - if(z - \overline z ) + c = 0 \\
\Rightarrow \alpha (z\overline z ) + (g - if)z + (g + if)\overline z + c = 0 \\
\Rightarrow \alpha (z\overline z ) + (\overline \beta )z + (\beta )\overline z + c = 0{\text{ }}[\overline \beta = g - if,\beta = g + if] \\
\Rightarrow \alpha z\overline z + \overline \beta z + \beta \overline z + c = 0 \\
\]
It is in the same form as the given equation. Now observe from the standard form of the circle that if we put$\alpha = 0$then we’ll get the equation of a straight line. Hence putting$\alpha = 0$in the given equation we’ll get$\overline \beta z + \beta \overline z + c = 0$. Hence option A is the correct option.
Note: The hack in this question was to observe that, what’s the relation between the equation of a circle and straight line in the coordinate plane.
Recently Updated Pages
What happens to the gravitational force between two class 11 physics NEET
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE