Answer
Verified
462.6k+ views
Hint: First we will learn about the greatest integer function using that we’ll find the value of the function $f(x)$. Then we will differentiate the function with-respect-to x to find the derivative of the function to find whether the function is increasing or not in the interval $(0,1)$
Complete step by step answer:
Given data: $f(x) = x - \left[ x \right]$
We know that $\left[ x \right]$ is the greatest integer function where it gives an integer value lesser or equal to ‘x’.
Now, we have given the domain for the function $f(x)$ i.e. $(0,1)$
From the definition of the greatest integer function, we can say that in the interval $(0,1)$
$ \Rightarrow \left[ x \right] = 0$
Hence, where $x \in (0,1)$
So we have $f(x) = x - 0$
\[ \Rightarrow f(x) = x\]
On differentiating with-respect-to x, we get,
$ \Rightarrow f'(x) = 1$ and $1 > 0$
Now, we know that if the derivative of a function is always positive in $(a,b)$, then it is increasing in$(a,b)$
similarly if the derivative of a function is always negative $(c,d)$, the function will be decreasing in the interval$(c,d)$.
Therefore we can say that the function is increasing in $(0,1)$
Note: We can also that the function f is increasing in $(0,1)$ by plotting the graph of the function in the interval of $(0,1)$
In the graph also we can see that the function is increasing in the interval $(0,1)$.
Complete step by step answer:
Given data: $f(x) = x - \left[ x \right]$
We know that $\left[ x \right]$ is the greatest integer function where it gives an integer value lesser or equal to ‘x’.
Now, we have given the domain for the function $f(x)$ i.e. $(0,1)$
From the definition of the greatest integer function, we can say that in the interval $(0,1)$
$ \Rightarrow \left[ x \right] = 0$
Hence, where $x \in (0,1)$
So we have $f(x) = x - 0$
\[ \Rightarrow f(x) = x\]
On differentiating with-respect-to x, we get,
$ \Rightarrow f'(x) = 1$ and $1 > 0$
Now, we know that if the derivative of a function is always positive in $(a,b)$, then it is increasing in$(a,b)$
similarly if the derivative of a function is always negative $(c,d)$, the function will be decreasing in the interval$(c,d)$.
Therefore we can say that the function is increasing in $(0,1)$
Note: We can also that the function f is increasing in $(0,1)$ by plotting the graph of the function in the interval of $(0,1)$
In the graph also we can see that the function is increasing in the interval $(0,1)$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE