Answer
Verified
498.9k+ views
Hint: The given problem is related to the equation of the tangent to a circle. Try to remember the equation of a tangent to a circle in parametric form.
Complete step-by-step answer:
We will consider the circle ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$. We know the radius of this circle is $r$ and the center of this circle is at $(0,0)$ .
We will consider a point $x=r\cos \theta $ and $y=r\sin \theta $ , i.e. $(r\cos \theta ,r\sin \theta )$ , on the circle, where $\theta $ is a parameter.
We know, the equation of the tangent at $({{x}_{1}},{{y}_{1}})$ is given as $x{{x}_{1}}+y{{y}_{1}}={{r}^{2}}$ .
So, the equation of the tangent at $(r\cos \theta ,r\sin \theta )$ is given as $x.r\cos \theta +y.r\sin \theta ={{r}^{2}}$
$\Rightarrow x\cos \theta +y\sin \theta =r....(i)$
Now, we know, the slope of the line given by $ax+by+c=0$ is given as $m=-\dfrac{a}{b}$
So, the slope of tangent given by equation$(i)$ is given as $m=-\dfrac{\cos \theta }{\sin \theta }=-\cot \theta $
Now, we know the product of two perpendicular lines is equal to $-1$ .
Let ${{m}_{\bot }}$ be the slope of the line perpendicular to the tangent. So, $m\times {{m}_{\bot }}=-1$
$\Rightarrow -\cot \theta \times {{m}_{\bot }}=-1$
$\Rightarrow {{m}_{\bot }}=\dfrac{-1}{-\cot \theta }=\tan \theta $
So, the slope of the line perpendicular to the tangent at $(r\cos \theta ,r\sin \theta )$ is given as ${{m}_{\bot }}=\tan \theta $ .
Now, we know, the equation of a line with slope $m$ and passing through $({{x}_{1}},{{y}_{1}})$ is given as $(y-{{y}_{1}})=m(x-{{x}_{1}})$.
So, the equation of the line passing through $(r\cos \theta ,r\sin \theta )$ and having slope ${{m}_{\bot }}=\tan \theta $ is given as $y-r\sin \theta =\tan \theta (x-r\cos \theta )$ .
$\Rightarrow y-r\sin \theta =x\tan \theta -r\sin \theta $
$\Rightarrow y-x\tan \theta =0.....(ii)$
Now, there is no constant term in equation $(ii)$ . So, the line represented by equation $(ii)$ will always pass through the origin, which is the center of the circle ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$.
Hence, any line perpendicular at the point of contact of a tangent to a circle passes through the center of the circle.
Note: While making substitutions, make sure that the substitutions are done correctly and no sign mistakes are present. Sign mistakes can cause the final answer to be wrong.
Complete step-by-step answer:
We will consider the circle ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$. We know the radius of this circle is $r$ and the center of this circle is at $(0,0)$ .
We will consider a point $x=r\cos \theta $ and $y=r\sin \theta $ , i.e. $(r\cos \theta ,r\sin \theta )$ , on the circle, where $\theta $ is a parameter.
We know, the equation of the tangent at $({{x}_{1}},{{y}_{1}})$ is given as $x{{x}_{1}}+y{{y}_{1}}={{r}^{2}}$ .
So, the equation of the tangent at $(r\cos \theta ,r\sin \theta )$ is given as $x.r\cos \theta +y.r\sin \theta ={{r}^{2}}$
$\Rightarrow x\cos \theta +y\sin \theta =r....(i)$
Now, we know, the slope of the line given by $ax+by+c=0$ is given as $m=-\dfrac{a}{b}$
So, the slope of tangent given by equation$(i)$ is given as $m=-\dfrac{\cos \theta }{\sin \theta }=-\cot \theta $
Now, we know the product of two perpendicular lines is equal to $-1$ .
Let ${{m}_{\bot }}$ be the slope of the line perpendicular to the tangent. So, $m\times {{m}_{\bot }}=-1$
$\Rightarrow -\cot \theta \times {{m}_{\bot }}=-1$
$\Rightarrow {{m}_{\bot }}=\dfrac{-1}{-\cot \theta }=\tan \theta $
So, the slope of the line perpendicular to the tangent at $(r\cos \theta ,r\sin \theta )$ is given as ${{m}_{\bot }}=\tan \theta $ .
Now, we know, the equation of a line with slope $m$ and passing through $({{x}_{1}},{{y}_{1}})$ is given as $(y-{{y}_{1}})=m(x-{{x}_{1}})$.
So, the equation of the line passing through $(r\cos \theta ,r\sin \theta )$ and having slope ${{m}_{\bot }}=\tan \theta $ is given as $y-r\sin \theta =\tan \theta (x-r\cos \theta )$ .
$\Rightarrow y-r\sin \theta =x\tan \theta -r\sin \theta $
$\Rightarrow y-x\tan \theta =0.....(ii)$
Now, there is no constant term in equation $(ii)$ . So, the line represented by equation $(ii)$ will always pass through the origin, which is the center of the circle ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$.
Hence, any line perpendicular at the point of contact of a tangent to a circle passes through the center of the circle.
Note: While making substitutions, make sure that the substitutions are done correctly and no sign mistakes are present. Sign mistakes can cause the final answer to be wrong.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE