Prove that the quadrilateral formed by the intersection of angle bisectors of all angles of a parallelogram is a rectangle.
Answer
Verified
498.6k+ views
Hint: In this given question, we can use the fact that adjacent angles of a parallelogram are supplementary meaning their sum is equal to ${{180}^{\circ }}$. Then we can use the concept of Vertically Opposite Angles (VOA) as equal to prove that each angle of the quadrilateral formed is a right angle, hence making it a rectangle.
Complete step-by-step answer:
In this given question, we are asked to prove that the quadrilateral formed by the intersection of angle bisectors of all angles of a parallelogram is a rectangle.
Here, we are going to the fact that adjacent angles of a parallelogram are supplementary meaning their sum is equal to ${{180}^{\circ }}$.
Also, we are going to use the angle sum property of triangles which gives us that the sum of all the angles of a triangle is equal to ${{180}^{\circ }}$.
The process of solving is as follows:
In parallelogram ABCD, as adjacent sides are supplementary so,
$\begin{align}
& \angle B+\angle C={{180}^{\circ }} \\
& \Rightarrow \dfrac{1}{2}\left( \angle B+\angle C \right)=\dfrac{1}{2}\times {{180}^{\circ }} \\
& \Rightarrow \dfrac{1}{2}\angle B+\dfrac{1}{2}\angle C={{90}^{\circ }}.............(1.1) \\
\end{align}$
As, angle bisectors bisect the angles into two equal halves,
$\angle QBC=\dfrac{1}{2}\angle B\text{ and }\angle \text{QCB=}\dfrac{1}{2}\angle C...........(1.2)$
Now, in $\Delta BQC$,
$\angle QBC+\angle QCB+\angle BQC={{180}^{\circ }}$ (by angle sum property of triangles)
$\Rightarrow \dfrac{1}{2}\angle B+\dfrac{1}{2}\angle C+\angle BQC={{180}^{\circ }}$ (from 1.2)
$\Rightarrow {{90}^{\circ }}+\angle BQC={{180}^{\circ }}$(From 1.1)
$\Rightarrow \angle BQC={{90}^{\circ }}.............(1.3)$
Now, as vertically opposite angles are equal,
$\angle BQC=\angle PQR............(1.4)$
From 1.3 and 1.4, we get,
$\angle PQR={{90}^{\circ }}$
Similarly, we can also obtain that,
$\angle QRS=\angle PSR=\angle SRQ={{90}^{\circ }}$
So, we get,
$\angle PQR=\angle QRS=\angle PSR=\angle SRQ={{90}^{\circ }}$
As all the four angles of the quadrilateral are right angles, we can conclude that it is a rectangle.
Therefore, we have proved that the quadrilateral formed by the intersection of angle bisectors of all angles of a parallelogram is a rectangle.
Note: In this sort of question, we may have also used another triangle in order to get the basis as proof as an example instead of $\Delta BQC$. Then we may have followed the same procedure and would have arrived at the same conclusion.
Complete step-by-step answer:
In this given question, we are asked to prove that the quadrilateral formed by the intersection of angle bisectors of all angles of a parallelogram is a rectangle.
Here, we are going to the fact that adjacent angles of a parallelogram are supplementary meaning their sum is equal to ${{180}^{\circ }}$.
Also, we are going to use the angle sum property of triangles which gives us that the sum of all the angles of a triangle is equal to ${{180}^{\circ }}$.
The process of solving is as follows:
In parallelogram ABCD, as adjacent sides are supplementary so,
$\begin{align}
& \angle B+\angle C={{180}^{\circ }} \\
& \Rightarrow \dfrac{1}{2}\left( \angle B+\angle C \right)=\dfrac{1}{2}\times {{180}^{\circ }} \\
& \Rightarrow \dfrac{1}{2}\angle B+\dfrac{1}{2}\angle C={{90}^{\circ }}.............(1.1) \\
\end{align}$
As, angle bisectors bisect the angles into two equal halves,
$\angle QBC=\dfrac{1}{2}\angle B\text{ and }\angle \text{QCB=}\dfrac{1}{2}\angle C...........(1.2)$
Now, in $\Delta BQC$,
$\angle QBC+\angle QCB+\angle BQC={{180}^{\circ }}$ (by angle sum property of triangles)
$\Rightarrow \dfrac{1}{2}\angle B+\dfrac{1}{2}\angle C+\angle BQC={{180}^{\circ }}$ (from 1.2)
$\Rightarrow {{90}^{\circ }}+\angle BQC={{180}^{\circ }}$(From 1.1)
$\Rightarrow \angle BQC={{90}^{\circ }}.............(1.3)$
Now, as vertically opposite angles are equal,
$\angle BQC=\angle PQR............(1.4)$
From 1.3 and 1.4, we get,
$\angle PQR={{90}^{\circ }}$
Similarly, we can also obtain that,
$\angle QRS=\angle PSR=\angle SRQ={{90}^{\circ }}$
So, we get,
$\angle PQR=\angle QRS=\angle PSR=\angle SRQ={{90}^{\circ }}$
As all the four angles of the quadrilateral are right angles, we can conclude that it is a rectangle.
Therefore, we have proved that the quadrilateral formed by the intersection of angle bisectors of all angles of a parallelogram is a rectangle.
Note: In this sort of question, we may have also used another triangle in order to get the basis as proof as an example instead of $\Delta BQC$. Then we may have followed the same procedure and would have arrived at the same conclusion.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
What constitutes the central nervous system How are class 10 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE