Answer
Verified
472.8k+ views
Hint: To prove this, we simplify both the fractions separately from \[\dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}}\] by using laws of indices given below. Since, we have the same base i.e. x, so we can apply the following laws.
Laws of indices: $(i)$ ${a^m} \cdot {a^n} = {a^{m + n}}$
$(ii)$ $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
$(iii)$ ${a^{ - n}} = \dfrac{1}{{{a^n}}}$
Complete step-by-step answer:
Simplify \[\dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}}\] by using laws of indices.
Use the law of indices ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$ and rewrite the terms.
\[\therefore \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = \dfrac{1}{{1 + \dfrac{{{x^a}}}{{{x^b}}}}} + \dfrac{1}{{1 + \dfrac{{{x^b}}}{{{x^a}}}}}\]
Find the least common denominator and take LCM in the denominator of both fractions.
$ \Rightarrow \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = \dfrac{1}{{\dfrac{{{x^b} + {x^a}}}{{{x^b}}}}} + \dfrac{1}{{\dfrac{{{x^a} + {x^b}}}{{{x^a}}}}}$
Remember, that dividing by fraction is the same as flipping the fraction in the denominator and then multiplying it with the numerator.
So flip the fraction in the denominator and multiply it to the numerator.
$ \Rightarrow \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = \dfrac{{{x^b}}}{{{x^a} + {x^b}}} + \dfrac{{{x^a}}}{{{x^a} + {x^b}}}$
Take LCM of both the fractions.
\[ \Rightarrow \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = \dfrac{{{x^b} + {x^a}}}{{{x^a} + {x^b}}}\]
Cancel the same terms from numerator and denominator.
\[ \Rightarrow \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = 1\]
Hence proved.
Additional Information: * When the base is the same then only we can apply the law of indices, be it multiplication of numbers with the same base or division of numbers with the same base.
* Always keep in mind that any number with power 0 will be equal to 1.
\[ \Rightarrow {a^0} = 1\]
* If powers are in fraction form, then we can write them as
\[ \Rightarrow {a^{\dfrac{m}{n}}} = {({a^m})^{\dfrac{1}{n}}}\] which means we take nth root of the term inside the bracket, so we can write
\[ \Rightarrow {a^{\dfrac{m}{n}}} = \sqrt[n]{{{a^m}}}\]
* Any number with the power m means that the number is multiplied to itself m number of times.
So, we can write \[{x^m} = \underbrace {x \times x \times x........ \times x}_m\]
Note: Students make mistake of assuming the values \[{x^{b - a}},{x^{a - b}}\]as some variables and try solving the fraction which is wrong way to proceed with the question. So, keep in mind we have to use formulas which make solutions easy and not more complex.
Laws of indices: $(i)$ ${a^m} \cdot {a^n} = {a^{m + n}}$
$(ii)$ $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
$(iii)$ ${a^{ - n}} = \dfrac{1}{{{a^n}}}$
Complete step-by-step answer:
Simplify \[\dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}}\] by using laws of indices.
Use the law of indices ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$ and rewrite the terms.
\[\therefore \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = \dfrac{1}{{1 + \dfrac{{{x^a}}}{{{x^b}}}}} + \dfrac{1}{{1 + \dfrac{{{x^b}}}{{{x^a}}}}}\]
Find the least common denominator and take LCM in the denominator of both fractions.
$ \Rightarrow \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = \dfrac{1}{{\dfrac{{{x^b} + {x^a}}}{{{x^b}}}}} + \dfrac{1}{{\dfrac{{{x^a} + {x^b}}}{{{x^a}}}}}$
Remember, that dividing by fraction is the same as flipping the fraction in the denominator and then multiplying it with the numerator.
So flip the fraction in the denominator and multiply it to the numerator.
$ \Rightarrow \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = \dfrac{{{x^b}}}{{{x^a} + {x^b}}} + \dfrac{{{x^a}}}{{{x^a} + {x^b}}}$
Take LCM of both the fractions.
\[ \Rightarrow \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = \dfrac{{{x^b} + {x^a}}}{{{x^a} + {x^b}}}\]
Cancel the same terms from numerator and denominator.
\[ \Rightarrow \dfrac{1}{{1 + {x^{a - b}}}} + \dfrac{1}{{1 + {x^{b - a}}}} = 1\]
Hence proved.
Additional Information: * When the base is the same then only we can apply the law of indices, be it multiplication of numbers with the same base or division of numbers with the same base.
* Always keep in mind that any number with power 0 will be equal to 1.
\[ \Rightarrow {a^0} = 1\]
* If powers are in fraction form, then we can write them as
\[ \Rightarrow {a^{\dfrac{m}{n}}} = {({a^m})^{\dfrac{1}{n}}}\] which means we take nth root of the term inside the bracket, so we can write
\[ \Rightarrow {a^{\dfrac{m}{n}}} = \sqrt[n]{{{a^m}}}\]
* Any number with the power m means that the number is multiplied to itself m number of times.
So, we can write \[{x^m} = \underbrace {x \times x \times x........ \times x}_m\]
Note: Students make mistake of assuming the values \[{x^{b - a}},{x^{a - b}}\]as some variables and try solving the fraction which is wrong way to proceed with the question. So, keep in mind we have to use formulas which make solutions easy and not more complex.
Recently Updated Pages
What is the maximum resistance which can be made using class 10 physics CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
In the following figure the value of resistor to be class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
On the portion of the straight line x + 2y 4 intercepted class 11 maths JEE_Main
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE