
Prove the equation ${{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right)$.
Answer
591.6k+ views
Hint: To solve this question, we should know the relation between the trigonometric ratios sine and cosine. We know the relation ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ which implies that $\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$. We should assume the terms in L.H.S as two different angles, that is, $\alpha ={{\sin }^{-1}}\left( \dfrac{8}{17} \right),\beta ={{\sin }^{-1}}\left( \dfrac{3}{5} \right)$. From these equations, we can write the values of $\sin \alpha ,\sin \beta ,\cos \alpha ,\cos \beta $. We have to evaluate the value of $\cos \left( \alpha +\beta \right)$ and by applying ${{\cos }^{-1}}$ to the equation, we get the required result.
Complete step by step answer:
Let us consider the two inverse sine terms in the L.H.S as two different angles.
$\alpha ={{\sin }^{-1}}\left( \dfrac{8}{17} \right)$
$\beta ={{\sin }^{-1}}\left( \dfrac{3}{5} \right)$
Applying sine on both sides in the above two equations, we get
$\begin{align}
& \sin \alpha =\dfrac{8}{17} \\
& \sin \beta =\dfrac{3}{5} \\
\end{align}$
We know the relation between sine and cosine functions as
${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
Subtracting ${{\sin }^{2}}\theta $ on both sides, we get
${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $
Applying square root on both sides, we get
$\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$
Using the above relation to get the values of $\cos \alpha ,\cos \beta $, we get
$\begin{align}
& \cos \alpha =\sqrt{1-{{\sin }^{2}}\alpha } \\
& \cos \alpha =\sqrt{1-{{\left( \dfrac{8}{17} \right)}^{2}}} \\
& \cos \alpha =\sqrt{1-\dfrac{64}{289}}=\sqrt{\dfrac{289-64}{289}}=\sqrt{\dfrac{225}{289}}=\dfrac{15}{17} \\
\end{align}$
$\begin{align}
& \cos \beta =\sqrt{1-{{\sin }^{2}}\beta } \\
& \cos \beta =\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}} \\
& \cos \beta =\sqrt{1-\dfrac{9}{25}}=\sqrt{\dfrac{25-9}{25}}=\sqrt{\dfrac{16}{25}}=\dfrac{4}{5} \\
\end{align}$
In the question, the L.H.S is in the form of $\alpha +\beta $ and the R.H.S contains ${{\cos }^{-1}}$ term in it. So, let us consider $\cos \left( \alpha +\beta \right)$
We know the relation $\cos (A+B)=\cos A\cos B-\sin A\sin B$
Using this relation, we get
$\cos (\alpha +\beta )=\cos \alpha \cos \beta -\sin \alpha \sin \beta $
Substituting the values of $\sin \alpha ,\sin \beta ,\cos \alpha ,\cos \beta $ in the above equation, we get
$\cos \left( \alpha +\beta \right)=\dfrac{15}{17}\times \dfrac{4}{5}-\dfrac{8}{17}\times \dfrac{3}{5}=\dfrac{60}{85}-\dfrac{24}{85}$
As the denominator is same, we can simplify the fraction as
$\cos \left( \alpha +\beta \right)=\dfrac{60-24}{85}=\dfrac{36}{85}$
By applying the function of ${{\cos }^{-1}}$ on both sides, we get
${{\cos }^{-1}}\left( \cos \left( \alpha +\beta \right) \right)={{\cos }^{-1}}\left( \dfrac{36}{85} \right)\to \left( 1 \right)$
We know that $0<\alpha ,\beta <\dfrac{\pi }{2}$ from the inference that both the ${{\sin }^{-1}}$ values are positive,
$0<\alpha +\beta <\pi $.
So we can write that ${{\cos }^{-1}}\left( \cos \left( \alpha +\beta \right) \right)=\alpha +\beta $,
Rewriting the equation-1, we get
$\alpha +\beta ={{\cos }^{-1}}\left( \dfrac{36}{85} \right)$
Substituting the values of $\alpha ,\beta $, we get
${{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right)$
$\therefore $The statement ${{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right)$ is proved.
Note:
The alternate way to do this problem is by applying cosine function in the first step of the solution. Applying cosine function and using $\cos (\alpha +\beta )=\cos \alpha \cos \beta -\sin \alpha \sin \beta $, we get
$\begin{align}
& \cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)=\cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right) \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)-\sin \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right) \right)\sin \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right) \\
& \Rightarrow \cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right) \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)-\dfrac{8}{17}\times \dfrac{3}{5} \\
\end{align}$
We know the formula ${{\sin }^{-1}}\dfrac{x}{y}={{\cos }^{-1}}\dfrac{\sqrt{{{y}^{2}}-{{x}^{2}}}}{y}$.
Using this relation, we get
$\cos \left( {{\cos }^{-1}}\left( \dfrac{15}{17} \right) \right)\cos \left( {{\cos }^{-1}}\left( \dfrac{4}{5} \right) \right)-\dfrac{8}{17}\times \dfrac{3}{5}=\dfrac{15}{17}\times \dfrac{4}{5}-\dfrac{8}{17}\times \dfrac{3}{5}=\dfrac{36}{65}$
$\begin{align}
& \cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)=\dfrac{36}{65} \\
& {{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right) \\
\end{align}$
Complete step by step answer:
Let us consider the two inverse sine terms in the L.H.S as two different angles.
$\alpha ={{\sin }^{-1}}\left( \dfrac{8}{17} \right)$
$\beta ={{\sin }^{-1}}\left( \dfrac{3}{5} \right)$
Applying sine on both sides in the above two equations, we get
$\begin{align}
& \sin \alpha =\dfrac{8}{17} \\
& \sin \beta =\dfrac{3}{5} \\
\end{align}$
We know the relation between sine and cosine functions as
${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
Subtracting ${{\sin }^{2}}\theta $ on both sides, we get
${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $
Applying square root on both sides, we get
$\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$
Using the above relation to get the values of $\cos \alpha ,\cos \beta $, we get
$\begin{align}
& \cos \alpha =\sqrt{1-{{\sin }^{2}}\alpha } \\
& \cos \alpha =\sqrt{1-{{\left( \dfrac{8}{17} \right)}^{2}}} \\
& \cos \alpha =\sqrt{1-\dfrac{64}{289}}=\sqrt{\dfrac{289-64}{289}}=\sqrt{\dfrac{225}{289}}=\dfrac{15}{17} \\
\end{align}$
$\begin{align}
& \cos \beta =\sqrt{1-{{\sin }^{2}}\beta } \\
& \cos \beta =\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}} \\
& \cos \beta =\sqrt{1-\dfrac{9}{25}}=\sqrt{\dfrac{25-9}{25}}=\sqrt{\dfrac{16}{25}}=\dfrac{4}{5} \\
\end{align}$
In the question, the L.H.S is in the form of $\alpha +\beta $ and the R.H.S contains ${{\cos }^{-1}}$ term in it. So, let us consider $\cos \left( \alpha +\beta \right)$
We know the relation $\cos (A+B)=\cos A\cos B-\sin A\sin B$
Using this relation, we get
$\cos (\alpha +\beta )=\cos \alpha \cos \beta -\sin \alpha \sin \beta $
Substituting the values of $\sin \alpha ,\sin \beta ,\cos \alpha ,\cos \beta $ in the above equation, we get
$\cos \left( \alpha +\beta \right)=\dfrac{15}{17}\times \dfrac{4}{5}-\dfrac{8}{17}\times \dfrac{3}{5}=\dfrac{60}{85}-\dfrac{24}{85}$
As the denominator is same, we can simplify the fraction as
$\cos \left( \alpha +\beta \right)=\dfrac{60-24}{85}=\dfrac{36}{85}$
By applying the function of ${{\cos }^{-1}}$ on both sides, we get
${{\cos }^{-1}}\left( \cos \left( \alpha +\beta \right) \right)={{\cos }^{-1}}\left( \dfrac{36}{85} \right)\to \left( 1 \right)$
We know that $0<\alpha ,\beta <\dfrac{\pi }{2}$ from the inference that both the ${{\sin }^{-1}}$ values are positive,
$0<\alpha +\beta <\pi $.
So we can write that ${{\cos }^{-1}}\left( \cos \left( \alpha +\beta \right) \right)=\alpha +\beta $,
Rewriting the equation-1, we get
$\alpha +\beta ={{\cos }^{-1}}\left( \dfrac{36}{85} \right)$
Substituting the values of $\alpha ,\beta $, we get
${{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right)$
$\therefore $The statement ${{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right)$ is proved.
Note:
The alternate way to do this problem is by applying cosine function in the first step of the solution. Applying cosine function and using $\cos (\alpha +\beta )=\cos \alpha \cos \beta -\sin \alpha \sin \beta $, we get
$\begin{align}
& \cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)=\cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right) \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)-\sin \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right) \right)\sin \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right) \\
& \Rightarrow \cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right) \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)-\dfrac{8}{17}\times \dfrac{3}{5} \\
\end{align}$
We know the formula ${{\sin }^{-1}}\dfrac{x}{y}={{\cos }^{-1}}\dfrac{\sqrt{{{y}^{2}}-{{x}^{2}}}}{y}$.
Using this relation, we get
$\cos \left( {{\cos }^{-1}}\left( \dfrac{15}{17} \right) \right)\cos \left( {{\cos }^{-1}}\left( \dfrac{4}{5} \right) \right)-\dfrac{8}{17}\times \dfrac{3}{5}=\dfrac{15}{17}\times \dfrac{4}{5}-\dfrac{8}{17}\times \dfrac{3}{5}=\dfrac{36}{65}$
$\begin{align}
& \cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)=\dfrac{36}{65} \\
& {{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right) \\
\end{align}$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

