
Prove the following; $(1{\text{ + cot A - cosec A)(1 + tan A + sec A) = 2}}$
Answer
619.8k+ views
Hint: In order to solve this question easily we will transform the given terms in of sin and cos. In this question we have to prove that the left - hand side is equal to the right - hand side.
Complete step-by-step answer:
Now, by using trigonometric identities we will easily solve the given problem. We know that $\sin {\text{A = }}\dfrac{1}{{\cos ec{\text{A}}}}$, ${\text{cosA = }}\dfrac{1}{{sec{\text{A}}}}$, ${\text{cotA = }}\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}$, ${\text{tanA = }}\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}$. By using these properties, we will solve this question. Now, putting these values in the given question, we get
L. H. S = $\left( {1 + {\text{ }}\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}{\text{ - }}\dfrac{1}{{\sin {\text{A}}}}} \right)\left( {1{\text{ + }}\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}{\text{ + }}\dfrac{1}{{\cos {\text{A}}}}} \right)$
\[ \Rightarrow \] L. H. S = \[\left( {\dfrac{{\sin {\text{A + cosA - 1}}}}{{\sin {\text{A}}}}} \right)\left( {\dfrac{{\cos {\text{A + sinA + 1}}}}{{\cos {\text{A}}}}} \right)\]
Now we can see that in the above equation we can use the property \[{{\text{a}}^2} - {{\text{b}}^2} = ({\text{a - b)(a + b)}}\]
So, applying this property we get
\[ \Rightarrow \] L. H. S = \[\left( {\dfrac{{{{(\sin {\text{A + cosA)}}}^2}{\text{ }} - {\text{ }}1}}{{\sin {\text{A cosA}}}}} \right)\]
By solving further, we get
\[ \Rightarrow \] L. H. S = \[\left( {\dfrac{{({{\sin }^2}{\text{A + co}}{{\text{s}}^2}{\text{A + 2cosA sinA) }} - {\text{ }}1}}{{\sin {\text{A cosA}}}}} \right)\]
\[ \Rightarrow \] L. H. S = \[\left( {\dfrac{{2\sin {\text{A cosA}}}}{{\sin {\text{A cosA}}}}} \right)\] as ${\sin ^2}{\text{A + }}{\text{co}}{{\text{s}}^2}{\text{A = 1}}$
\[ \Rightarrow \] L. H. S = 2 = R. H. S
Hence proved.
Note: To solve questions which include trigonometric terms it is suggested that you should simplify the given term by converting it into sin or cos whichever is possible. Converting in sin or cos simplify the term and you can easily solve the given term. Use identity ${\sin ^2}{\text{A + }}{\text{co}}{{\text{s}}^2}{\text{A = 1}}$ properly after converting the trigonometric term.
Complete step-by-step answer:
Now, by using trigonometric identities we will easily solve the given problem. We know that $\sin {\text{A = }}\dfrac{1}{{\cos ec{\text{A}}}}$, ${\text{cosA = }}\dfrac{1}{{sec{\text{A}}}}$, ${\text{cotA = }}\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}$, ${\text{tanA = }}\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}$. By using these properties, we will solve this question. Now, putting these values in the given question, we get
L. H. S = $\left( {1 + {\text{ }}\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}{\text{ - }}\dfrac{1}{{\sin {\text{A}}}}} \right)\left( {1{\text{ + }}\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}{\text{ + }}\dfrac{1}{{\cos {\text{A}}}}} \right)$
\[ \Rightarrow \] L. H. S = \[\left( {\dfrac{{\sin {\text{A + cosA - 1}}}}{{\sin {\text{A}}}}} \right)\left( {\dfrac{{\cos {\text{A + sinA + 1}}}}{{\cos {\text{A}}}}} \right)\]
Now we can see that in the above equation we can use the property \[{{\text{a}}^2} - {{\text{b}}^2} = ({\text{a - b)(a + b)}}\]
So, applying this property we get
\[ \Rightarrow \] L. H. S = \[\left( {\dfrac{{{{(\sin {\text{A + cosA)}}}^2}{\text{ }} - {\text{ }}1}}{{\sin {\text{A cosA}}}}} \right)\]
By solving further, we get
\[ \Rightarrow \] L. H. S = \[\left( {\dfrac{{({{\sin }^2}{\text{A + co}}{{\text{s}}^2}{\text{A + 2cosA sinA) }} - {\text{ }}1}}{{\sin {\text{A cosA}}}}} \right)\]
\[ \Rightarrow \] L. H. S = \[\left( {\dfrac{{2\sin {\text{A cosA}}}}{{\sin {\text{A cosA}}}}} \right)\] as ${\sin ^2}{\text{A + }}{\text{co}}{{\text{s}}^2}{\text{A = 1}}$
\[ \Rightarrow \] L. H. S = 2 = R. H. S
Hence proved.
Note: To solve questions which include trigonometric terms it is suggested that you should simplify the given term by converting it into sin or cos whichever is possible. Converting in sin or cos simplify the term and you can easily solve the given term. Use identity ${\sin ^2}{\text{A + }}{\text{co}}{{\text{s}}^2}{\text{A = 1}}$ properly after converting the trigonometric term.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

