Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Prove the following; (1 + cot A - cosec A)(1 + tan A + sec A) = 2

Answer
VerifiedVerified
534.3k+ views
like imagedislike image
Hint: In order to solve this question easily we will transform the given terms in of sin and cos. In this question we have to prove that the left - hand side is equal to the right - hand side.

Complete step-by-step answer:
Now, by using trigonometric identities we will easily solve the given problem. We know that sinA = 1cosecA, cosA = 1secA, cotA = cosAsinA, tanA = sinAcosA. By using these properties, we will solve this question. Now, putting these values in the given question, we get
L. H. S = (1+ cosAsinA - 1sinA)(1 + sinAcosA + 1cosA)
L. H. S = (sinA + cosA - 1sinA)(cosA + sinA + 1cosA)
Now we can see that in the above equation we can use the property a2b2=(a - b)(a + b)
So, applying this property we get
L. H. S = ((sinA + cosA)2  1sinA cosA)
By solving further, we get
L. H. S = ((sin2A + cos2A + 2cosA sinA)  1sinA cosA)
L. H. S = (2sinA cosAsinA cosA) as sin2A + cos2A = 1
L. H. S = 2 = R. H. S
Hence proved.

Note: To solve questions which include trigonometric terms it is suggested that you should simplify the given term by converting it into sin or cos whichever is possible. Converting in sin or cos simplify the term and you can easily solve the given term. Use identity sin2A + cos2A = 1 properly after converting the trigonometric term.
3 views
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
calendar iconAcademic year 2025-26
language iconENGLISH
book iconUnlimited access till final school exam
tick
School Full course for CBSE students
PhysicsPhysics
ChemistryChemistry
MathsMaths
₹41,848 per year
Select and buy