
Prove the following:
A) $ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} = 1 + \sec A\cos ecA $
B) $ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} = 2{\sec ^2}A $
Answer
564.9k+ views
Hint: Initially, define the L.H.S part and R.H.S part of the given expression. Then, consider L.H.S part and simplify it by using the trigonometric formulas along with algebraic identities. Then, check whether the L.H.S part is similar to the R.H.S part or not. If it is equal then, the given equation will get proved.
Complete step-by-step answer:
Given expression is:
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} = 1 + \sec A\cos ecA $----- (1)
From equation (1),
L.H.S = $ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} $
R.H.S = $ 1 + \sec A\cos ecA $
Consider the left hand side of the given expression ‘L.H.S’,
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} $----- (2)
Using trigonometric formula, we know that:
\[ \Rightarrow \]$ \tan A = \dfrac{{\sin A}}{{\cos A}} $----- (3)
\[ \Rightarrow \]$ \cot A = \dfrac{{\cos A}}{{\sin A}} $----- (4)
Substitute equation (3) and (4) into equation (2), and we get:
\[ \Rightarrow \]$ \dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{1 - \dfrac{{\cos A}}{{\sin A}}}} + \dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{1 - \dfrac{{\sin A}}{{\cos A}}}} $
\[ \Rightarrow \]$ \dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{\dfrac{{\sin A - \cos A}}{{\sin A}}}} + \dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{\dfrac{{co\operatorname{s} A - \sin A}}{{co\operatorname{s} A}}}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^2}A}}{{\cos A(\sin A - \cos A)}} + \dfrac{{{{\cos }^2}A}}{{\sin A(\cos A - \sin A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^2}A}}{{\cos A(\sin A - \cos A)}} - \dfrac{{{{\cos }^2}A}}{{\sin A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^3}A}}{{\cos A\sin A(\sin A - \cos A)}} - \dfrac{{{{\cos }^3}A}}{{\sin A\cos A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^3}A - {{\cos }^3}A}}{{\cos A\sin A(\sin A - \cos A)}} $ ----- (5)
Using Algebraic Identities, $ {a^3} - {b^3} = (a - b)({a^2} + ab + {b^2}) $ in equation (5), we get:
\[ \Rightarrow \]$ \dfrac{{(\sin A - \cos A)({{\sin }^2}A + \sin A\cos A + {{\cos }^2}A)}}{{\cos A\sin A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{({{\sin }^2}A + \sin A\cos A + {{\cos }^2}A)}}{{\cos A\sin A}} $----- (6)
Using Trigonometric Identities: $ {\sin ^2}A + {\cos ^2}A = 1 $ in equation (6), we get:
\[ \Rightarrow \]$ \dfrac{{(1 + \sin A\cos A)}}{{\cos A\sin A}} $ ----- (7)
Using Trigonometric formula: $ \dfrac{1}{{\cos A}} = \sec A, $ $ \dfrac{1}{{\sin A}} = \cos ecA $ in equation (7), we get:
\[ \Rightarrow \]$ \sec A\cos ecA + 1 $ = R.H.S ----- (8)
It is clear from equation (2) and (8) that
L.H.S = R.H.S
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} = 1 + \sec A\cos ecA $
Given expression is:
\[ \Rightarrow \] $ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} = 2{\sec ^2}A $----- (1)
From equation (1),
L.H.S = $ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} $
R.H.S = $ 2{\sec ^2}A $
Consider the left hand side of the given expression ‘L.H.S’,
\[ \Rightarrow \]$ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} $----- (2)
Taking L.C.M of equation (2), and simplifying it, we get:
\[ \Rightarrow \]$ \dfrac{{\cos ecA\left( {\cos ecA + 1} \right) + \cos ecA\left( {\cos ecA - 1} \right)}}{{\left( {\cos ecA - 1} \right)\left( {\cos ecA + 1} \right)}} $
Using Algebraic Identities, $ {a^2} - {b^2} = (a - b)(a + b) $ in above expression, we get:
\[ \Rightarrow \]$ \dfrac{{2\cos e{c^2}A}}{{\cos e{c^2}A - 1}}$ ----- (3)
Using Trigonometric formula:
\[ \Rightarrow \]$ \dfrac{1}{{\sin A}} = \cos ecA $ and $\cos e{c^2}A - 1 = {\cot ^2} A$ in equation (3), we get:
\[ \Rightarrow \]$ \dfrac{{2\cos e{c^2}A}}{{{{\cot }^2}A}} $
\[ \Rightarrow \]\[ \dfrac{{\dfrac{2}{{{{\sin }^2}A}}}}{{\dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}}}} = \dfrac{2}{{{{\sin }^2}A}} \times \dfrac{{{{\sin }^2}A}}{{co{\operatorname{s} ^2}A}}\]
\[ \to \dfrac{2}{{co{\operatorname{s} ^2}A}} = 2{\sec ^2}A\] ----- (4)
It is clear from equation (2) and (4) that
L.H.S = R.H.S
\[ \Rightarrow \]$ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} = 2{\sec ^2}A $
Note: In conclusion always try to convert any given trigonometric expression into basic ‘sin’ and ‘cos’ terms and using algebraic identities formula, it can be easily solved. Whenever the ‘tan’ or ‘cot’ term is given in the question always try to convert it into ‘sin’ and ‘cos’ terms.
Complete step-by-step answer:
Given expression is:
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} = 1 + \sec A\cos ecA $----- (1)
From equation (1),
L.H.S = $ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} $
R.H.S = $ 1 + \sec A\cos ecA $
Consider the left hand side of the given expression ‘L.H.S’,
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} $----- (2)
Using trigonometric formula, we know that:
\[ \Rightarrow \]$ \tan A = \dfrac{{\sin A}}{{\cos A}} $----- (3)
\[ \Rightarrow \]$ \cot A = \dfrac{{\cos A}}{{\sin A}} $----- (4)
Substitute equation (3) and (4) into equation (2), and we get:
\[ \Rightarrow \]$ \dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{1 - \dfrac{{\cos A}}{{\sin A}}}} + \dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{1 - \dfrac{{\sin A}}{{\cos A}}}} $
\[ \Rightarrow \]$ \dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{\dfrac{{\sin A - \cos A}}{{\sin A}}}} + \dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{\dfrac{{co\operatorname{s} A - \sin A}}{{co\operatorname{s} A}}}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^2}A}}{{\cos A(\sin A - \cos A)}} + \dfrac{{{{\cos }^2}A}}{{\sin A(\cos A - \sin A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^2}A}}{{\cos A(\sin A - \cos A)}} - \dfrac{{{{\cos }^2}A}}{{\sin A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^3}A}}{{\cos A\sin A(\sin A - \cos A)}} - \dfrac{{{{\cos }^3}A}}{{\sin A\cos A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^3}A - {{\cos }^3}A}}{{\cos A\sin A(\sin A - \cos A)}} $ ----- (5)
Using Algebraic Identities, $ {a^3} - {b^3} = (a - b)({a^2} + ab + {b^2}) $ in equation (5), we get:
\[ \Rightarrow \]$ \dfrac{{(\sin A - \cos A)({{\sin }^2}A + \sin A\cos A + {{\cos }^2}A)}}{{\cos A\sin A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{({{\sin }^2}A + \sin A\cos A + {{\cos }^2}A)}}{{\cos A\sin A}} $----- (6)
Using Trigonometric Identities: $ {\sin ^2}A + {\cos ^2}A = 1 $ in equation (6), we get:
\[ \Rightarrow \]$ \dfrac{{(1 + \sin A\cos A)}}{{\cos A\sin A}} $ ----- (7)
Using Trigonometric formula: $ \dfrac{1}{{\cos A}} = \sec A, $ $ \dfrac{1}{{\sin A}} = \cos ecA $ in equation (7), we get:
\[ \Rightarrow \]$ \sec A\cos ecA + 1 $ = R.H.S ----- (8)
It is clear from equation (2) and (8) that
L.H.S = R.H.S
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} = 1 + \sec A\cos ecA $
Given expression is:
\[ \Rightarrow \] $ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} = 2{\sec ^2}A $----- (1)
From equation (1),
L.H.S = $ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} $
R.H.S = $ 2{\sec ^2}A $
Consider the left hand side of the given expression ‘L.H.S’,
\[ \Rightarrow \]$ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} $----- (2)
Taking L.C.M of equation (2), and simplifying it, we get:
\[ \Rightarrow \]$ \dfrac{{\cos ecA\left( {\cos ecA + 1} \right) + \cos ecA\left( {\cos ecA - 1} \right)}}{{\left( {\cos ecA - 1} \right)\left( {\cos ecA + 1} \right)}} $
Using Algebraic Identities, $ {a^2} - {b^2} = (a - b)(a + b) $ in above expression, we get:
\[ \Rightarrow \]$ \dfrac{{2\cos e{c^2}A}}{{\cos e{c^2}A - 1}}$ ----- (3)
Using Trigonometric formula:
\[ \Rightarrow \]$ \dfrac{1}{{\sin A}} = \cos ecA $ and $\cos e{c^2}A - 1 = {\cot ^2} A$ in equation (3), we get:
\[ \Rightarrow \]$ \dfrac{{2\cos e{c^2}A}}{{{{\cot }^2}A}} $
\[ \Rightarrow \]\[ \dfrac{{\dfrac{2}{{{{\sin }^2}A}}}}{{\dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}}}} = \dfrac{2}{{{{\sin }^2}A}} \times \dfrac{{{{\sin }^2}A}}{{co{\operatorname{s} ^2}A}}\]
\[ \to \dfrac{2}{{co{\operatorname{s} ^2}A}} = 2{\sec ^2}A\] ----- (4)
It is clear from equation (2) and (4) that
L.H.S = R.H.S
\[ \Rightarrow \]$ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} = 2{\sec ^2}A $
Note: In conclusion always try to convert any given trigonometric expression into basic ‘sin’ and ‘cos’ terms and using algebraic identities formula, it can be easily solved. Whenever the ‘tan’ or ‘cot’ term is given in the question always try to convert it into ‘sin’ and ‘cos’ terms.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

