Answer
Verified
441.3k+ views
Hint: Initially, define the L.H.S part and R.H.S part of the given expression. Then, consider L.H.S part and simplify it by using the trigonometric formulas along with algebraic identities. Then, check whether the L.H.S part is similar to the R.H.S part or not. If it is equal then, the given equation will get proved.
Complete step-by-step answer:
Given expression is:
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} = 1 + \sec A\cos ecA $----- (1)
From equation (1),
L.H.S = $ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} $
R.H.S = $ 1 + \sec A\cos ecA $
Consider the left hand side of the given expression ‘L.H.S’,
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} $----- (2)
Using trigonometric formula, we know that:
\[ \Rightarrow \]$ \tan A = \dfrac{{\sin A}}{{\cos A}} $----- (3)
\[ \Rightarrow \]$ \cot A = \dfrac{{\cos A}}{{\sin A}} $----- (4)
Substitute equation (3) and (4) into equation (2), and we get:
\[ \Rightarrow \]$ \dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{1 - \dfrac{{\cos A}}{{\sin A}}}} + \dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{1 - \dfrac{{\sin A}}{{\cos A}}}} $
\[ \Rightarrow \]$ \dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{\dfrac{{\sin A - \cos A}}{{\sin A}}}} + \dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{\dfrac{{co\operatorname{s} A - \sin A}}{{co\operatorname{s} A}}}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^2}A}}{{\cos A(\sin A - \cos A)}} + \dfrac{{{{\cos }^2}A}}{{\sin A(\cos A - \sin A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^2}A}}{{\cos A(\sin A - \cos A)}} - \dfrac{{{{\cos }^2}A}}{{\sin A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^3}A}}{{\cos A\sin A(\sin A - \cos A)}} - \dfrac{{{{\cos }^3}A}}{{\sin A\cos A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^3}A - {{\cos }^3}A}}{{\cos A\sin A(\sin A - \cos A)}} $ ----- (5)
Using Algebraic Identities, $ {a^3} - {b^3} = (a - b)({a^2} + ab + {b^2}) $ in equation (5), we get:
\[ \Rightarrow \]$ \dfrac{{(\sin A - \cos A)({{\sin }^2}A + \sin A\cos A + {{\cos }^2}A)}}{{\cos A\sin A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{({{\sin }^2}A + \sin A\cos A + {{\cos }^2}A)}}{{\cos A\sin A}} $----- (6)
Using Trigonometric Identities: $ {\sin ^2}A + {\cos ^2}A = 1 $ in equation (6), we get:
\[ \Rightarrow \]$ \dfrac{{(1 + \sin A\cos A)}}{{\cos A\sin A}} $ ----- (7)
Using Trigonometric formula: $ \dfrac{1}{{\cos A}} = \sec A, $ $ \dfrac{1}{{\sin A}} = \cos ecA $ in equation (7), we get:
\[ \Rightarrow \]$ \sec A\cos ecA + 1 $ = R.H.S ----- (8)
It is clear from equation (2) and (8) that
L.H.S = R.H.S
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} = 1 + \sec A\cos ecA $
Given expression is:
\[ \Rightarrow \] $ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} = 2{\sec ^2}A $----- (1)
From equation (1),
L.H.S = $ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} $
R.H.S = $ 2{\sec ^2}A $
Consider the left hand side of the given expression ‘L.H.S’,
\[ \Rightarrow \]$ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} $----- (2)
Taking L.C.M of equation (2), and simplifying it, we get:
\[ \Rightarrow \]$ \dfrac{{\cos ecA\left( {\cos ecA + 1} \right) + \cos ecA\left( {\cos ecA - 1} \right)}}{{\left( {\cos ecA - 1} \right)\left( {\cos ecA + 1} \right)}} $
Using Algebraic Identities, $ {a^2} - {b^2} = (a - b)(a + b) $ in above expression, we get:
\[ \Rightarrow \]$ \dfrac{{2\cos e{c^2}A}}{{\cos e{c^2}A - 1}}$ ----- (3)
Using Trigonometric formula:
\[ \Rightarrow \]$ \dfrac{1}{{\sin A}} = \cos ecA $ and $\cos e{c^2}A - 1 = {\cot ^2} A$ in equation (3), we get:
\[ \Rightarrow \]$ \dfrac{{2\cos e{c^2}A}}{{{{\cot }^2}A}} $
\[ \Rightarrow \]\[ \dfrac{{\dfrac{2}{{{{\sin }^2}A}}}}{{\dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}}}} = \dfrac{2}{{{{\sin }^2}A}} \times \dfrac{{{{\sin }^2}A}}{{co{\operatorname{s} ^2}A}}\]
\[ \to \dfrac{2}{{co{\operatorname{s} ^2}A}} = 2{\sec ^2}A\] ----- (4)
It is clear from equation (2) and (4) that
L.H.S = R.H.S
\[ \Rightarrow \]$ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} = 2{\sec ^2}A $
Note: In conclusion always try to convert any given trigonometric expression into basic ‘sin’ and ‘cos’ terms and using algebraic identities formula, it can be easily solved. Whenever the ‘tan’ or ‘cot’ term is given in the question always try to convert it into ‘sin’ and ‘cos’ terms.
Complete step-by-step answer:
Given expression is:
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} = 1 + \sec A\cos ecA $----- (1)
From equation (1),
L.H.S = $ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} $
R.H.S = $ 1 + \sec A\cos ecA $
Consider the left hand side of the given expression ‘L.H.S’,
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} $----- (2)
Using trigonometric formula, we know that:
\[ \Rightarrow \]$ \tan A = \dfrac{{\sin A}}{{\cos A}} $----- (3)
\[ \Rightarrow \]$ \cot A = \dfrac{{\cos A}}{{\sin A}} $----- (4)
Substitute equation (3) and (4) into equation (2), and we get:
\[ \Rightarrow \]$ \dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{1 - \dfrac{{\cos A}}{{\sin A}}}} + \dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{1 - \dfrac{{\sin A}}{{\cos A}}}} $
\[ \Rightarrow \]$ \dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{\dfrac{{\sin A - \cos A}}{{\sin A}}}} + \dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{\dfrac{{co\operatorname{s} A - \sin A}}{{co\operatorname{s} A}}}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^2}A}}{{\cos A(\sin A - \cos A)}} + \dfrac{{{{\cos }^2}A}}{{\sin A(\cos A - \sin A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^2}A}}{{\cos A(\sin A - \cos A)}} - \dfrac{{{{\cos }^2}A}}{{\sin A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^3}A}}{{\cos A\sin A(\sin A - \cos A)}} - \dfrac{{{{\cos }^3}A}}{{\sin A\cos A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^3}A - {{\cos }^3}A}}{{\cos A\sin A(\sin A - \cos A)}} $ ----- (5)
Using Algebraic Identities, $ {a^3} - {b^3} = (a - b)({a^2} + ab + {b^2}) $ in equation (5), we get:
\[ \Rightarrow \]$ \dfrac{{(\sin A - \cos A)({{\sin }^2}A + \sin A\cos A + {{\cos }^2}A)}}{{\cos A\sin A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{({{\sin }^2}A + \sin A\cos A + {{\cos }^2}A)}}{{\cos A\sin A}} $----- (6)
Using Trigonometric Identities: $ {\sin ^2}A + {\cos ^2}A = 1 $ in equation (6), we get:
\[ \Rightarrow \]$ \dfrac{{(1 + \sin A\cos A)}}{{\cos A\sin A}} $ ----- (7)
Using Trigonometric formula: $ \dfrac{1}{{\cos A}} = \sec A, $ $ \dfrac{1}{{\sin A}} = \cos ecA $ in equation (7), we get:
\[ \Rightarrow \]$ \sec A\cos ecA + 1 $ = R.H.S ----- (8)
It is clear from equation (2) and (8) that
L.H.S = R.H.S
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} = 1 + \sec A\cos ecA $
Given expression is:
\[ \Rightarrow \] $ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} = 2{\sec ^2}A $----- (1)
From equation (1),
L.H.S = $ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} $
R.H.S = $ 2{\sec ^2}A $
Consider the left hand side of the given expression ‘L.H.S’,
\[ \Rightarrow \]$ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} $----- (2)
Taking L.C.M of equation (2), and simplifying it, we get:
\[ \Rightarrow \]$ \dfrac{{\cos ecA\left( {\cos ecA + 1} \right) + \cos ecA\left( {\cos ecA - 1} \right)}}{{\left( {\cos ecA - 1} \right)\left( {\cos ecA + 1} \right)}} $
Using Algebraic Identities, $ {a^2} - {b^2} = (a - b)(a + b) $ in above expression, we get:
\[ \Rightarrow \]$ \dfrac{{2\cos e{c^2}A}}{{\cos e{c^2}A - 1}}$ ----- (3)
Using Trigonometric formula:
\[ \Rightarrow \]$ \dfrac{1}{{\sin A}} = \cos ecA $ and $\cos e{c^2}A - 1 = {\cot ^2} A$ in equation (3), we get:
\[ \Rightarrow \]$ \dfrac{{2\cos e{c^2}A}}{{{{\cot }^2}A}} $
\[ \Rightarrow \]\[ \dfrac{{\dfrac{2}{{{{\sin }^2}A}}}}{{\dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}}}} = \dfrac{2}{{{{\sin }^2}A}} \times \dfrac{{{{\sin }^2}A}}{{co{\operatorname{s} ^2}A}}\]
\[ \to \dfrac{2}{{co{\operatorname{s} ^2}A}} = 2{\sec ^2}A\] ----- (4)
It is clear from equation (2) and (4) that
L.H.S = R.H.S
\[ \Rightarrow \]$ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} = 2{\sec ^2}A $
Note: In conclusion always try to convert any given trigonometric expression into basic ‘sin’ and ‘cos’ terms and using algebraic identities formula, it can be easily solved. Whenever the ‘tan’ or ‘cot’ term is given in the question always try to convert it into ‘sin’ and ‘cos’ terms.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
The quadratic equation whose one root is 2sqrt3 will class 10 maths JEE_Main
If alpha and beta are the roots of the equation x2 class 10 maths JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers