
Prove the following : \[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x\]
Answer
619.2k+ views
Hint: Take the LHS of the expression. Apply the basic trigonometric identities in the numerator and denominator of the expression and simplify it. Hence, prove that LHS=RHS.
“Complete step-by-step answer:”
We have been given the expression, \[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x\].
Let us consider the LHS of the expression.
LHS = \[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}\].
We know the basic trigonometric identities,
\[\begin{align}
& \cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) \\
& \sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) \\
\end{align}\]
Let us take \[\left( \cos 4x+\cos 2x \right)\] from the numerator and apply the trigonometric identity.
\[\therefore \cos 4x+\cos 2x=2\cos \left( \dfrac{4x+2x}{2} \right)\cos \left( \dfrac{4x-2x}{2} \right)\]
\[\begin{align}
& =2\cos \left( \dfrac{6x}{2} \right)\cos \left( \dfrac{2x}{2} \right) \\
& =2\cos 3x\cos x \\
\end{align}\]
Now let us substitute the values of \[\left( \cos 4x+\cos 2x \right)\] and \[\left( \sin 4x+\sin 2x \right)\] in the LHS.
\[\begin{align}
& LHS=\dfrac{\left( \cos 4x+\cos 2x \right)+\cos 3x}{\left( \sin 4x+\sin 2x \right)+\sin 3x} \\
& LHS=\dfrac{2\cos 3x\cos x+\cos 3x}{2\sin 3x\cos x+\sin 3x} \\
\end{align}\]
Take \[\left( \cos 3x \right)\]common from the numerator and \[\left( \sin 3x \right)\]from the denominator.
\[=\dfrac{\cos 3x\left[ 2\cos x+1 \right]}{\sin 3x\left[ 2\cos x+1 \right]}\]
Cancel out \[\left( 2\cos x+1 \right)\] from the numerator and denominator.
\[\therefore LHS=\dfrac{\cos 3x}{\sin 3x}\]
We know that, \[\dfrac{\cos x}{\sin x}=\cot x\]
Hence, \[\dfrac{\cos 3x}{\sin 3x}=\cot 3x\].
\[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x\]
\[\therefore \]LHS = RHS
Hence proved.
Note: Remember the basic trigonometric identities like \[\left( \sin a+\sin b \right)\] and \[\left( \cos a+\cos b \right)\] which we have used to solve this expression. Trigonometric identities are an important section in maths. Just apply the formula and simplify it to get the required answer.
“Complete step-by-step answer:”
We have been given the expression, \[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x\].
Let us consider the LHS of the expression.
LHS = \[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}\].
We know the basic trigonometric identities,
\[\begin{align}
& \cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) \\
& \sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) \\
\end{align}\]
Let us take \[\left( \cos 4x+\cos 2x \right)\] from the numerator and apply the trigonometric identity.
\[\therefore \cos 4x+\cos 2x=2\cos \left( \dfrac{4x+2x}{2} \right)\cos \left( \dfrac{4x-2x}{2} \right)\]
\[\begin{align}
& =2\cos \left( \dfrac{6x}{2} \right)\cos \left( \dfrac{2x}{2} \right) \\
& =2\cos 3x\cos x \\
\end{align}\]
Now let us substitute the values of \[\left( \cos 4x+\cos 2x \right)\] and \[\left( \sin 4x+\sin 2x \right)\] in the LHS.
\[\begin{align}
& LHS=\dfrac{\left( \cos 4x+\cos 2x \right)+\cos 3x}{\left( \sin 4x+\sin 2x \right)+\sin 3x} \\
& LHS=\dfrac{2\cos 3x\cos x+\cos 3x}{2\sin 3x\cos x+\sin 3x} \\
\end{align}\]
Take \[\left( \cos 3x \right)\]common from the numerator and \[\left( \sin 3x \right)\]from the denominator.
\[=\dfrac{\cos 3x\left[ 2\cos x+1 \right]}{\sin 3x\left[ 2\cos x+1 \right]}\]
Cancel out \[\left( 2\cos x+1 \right)\] from the numerator and denominator.
\[\therefore LHS=\dfrac{\cos 3x}{\sin 3x}\]
We know that, \[\dfrac{\cos x}{\sin x}=\cot x\]
Hence, \[\dfrac{\cos 3x}{\sin 3x}=\cot 3x\].
\[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x\]
\[\therefore \]LHS = RHS
Hence proved.
Note: Remember the basic trigonometric identities like \[\left( \sin a+\sin b \right)\] and \[\left( \cos a+\cos b \right)\] which we have used to solve this expression. Trigonometric identities are an important section in maths. Just apply the formula and simplify it to get the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

