Answer
Verified
470.4k+ views
Hint: We will use the expansion of hyperbolic functions and substitute the values in LHS and RHS of the equation separately.
* \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\] and \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\]
Complete step-by-step answer:
First we solve Left hand side of the equation i.e. \[\left( {\cosh A - \cosh B} \right)\]
We know \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\]
So, we find the values of \[\cosh A,\cosh B\]
\[ \Rightarrow \cosh A = \dfrac{{{e^A} + {e^{ - A}}}}{2}\]
\[ \Rightarrow \cosh B = \dfrac{{{e^B} + {e^{ - B}}}}{2}\]
Now substituting the values in LHS of the equation we get
\[ \Rightarrow \left( {\cosh A - \cosh B} \right) = \left( {\dfrac{{{e^A} + {e^{ - A}}}}{2}} \right) - \left( {\dfrac{{{e^B} + {e^{ - B}}}}{2}} \right)\]
Now since the denominator is the same we can subtract the terms in the numerator.
\[
\Rightarrow \left( {\cosh A - \cosh B} \right) = \left( {\dfrac{{({e^A} + {e^{ - A}}) - ({e^B} + {e^{ - B}})}}{2}} \right) \\
\Rightarrow \left( {\cosh A - \cosh B} \right) = \left( {\dfrac{{{e^A} + {e^{ - A}} - {e^B} - {e^{ - B}}}}{2}} \right) \\
\]
Group the terms in the numerator.
\[ \Rightarrow \left( {\cosh A - \cosh B} \right) = \left( {\dfrac{{({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})}}{2}} \right)\] … (1)
Now we solve right hand side of the equation i.e. \[\left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right)\]
Since, we know \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\].
So we find the values of \[\sinh (\dfrac{{A + B}}{2}),\sinh (\dfrac{{A - B}}{2})\]
\[
\sinh (\dfrac{{A + B}}{2}) = \dfrac{{{e^{\dfrac{{A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2}}}}}{2} \\
\sinh (\dfrac{{A - B}}{2}) = \dfrac{{{e^{\dfrac{{A - B}}{2}}} - {e^{\dfrac{{ - A + B}}{2}}}}}{2} \\
\]
Substituting the values in RHS of the equation we get
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = 2\left( {\dfrac{{{e^{\dfrac{{A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2}}}}}{2}} \right)\left( {\dfrac{{{e^{\dfrac{{A - B}}{2}}} - {e^{\dfrac{{ - A + B}}{2}}}}}{2}} \right)\]
Cancel out the common factor 2 from both numerator and denominator.
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left( {{e^{\dfrac{{A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2}}}} \right)\left( {{e^{\dfrac{{A - B}}{2}}} - {e^{\dfrac{{ - A + B}}{2}}}} \right)\]
Now we multiply the brackets.
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^{\dfrac{{A + B}}{2}}} \times {e^{\dfrac{{A - B}}{2}}} - {e^{\dfrac{{A + B}}{2}}} \times {e^{\dfrac{{ - A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2}}} \times {e^{\dfrac{{A - B}}{2}}} + {e^{\dfrac{{ - A - B}}{2}}} \times {e^{\dfrac{{ - A + B}}{2}}}} \right]\]
Now using the law of indices, when the base is the same powers can be added. Here the base is same i.e. e, so we can add the powers of each term
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^{\dfrac{{A + B}}{2} + \dfrac{{A - B}}{2}}} - {e^{\dfrac{{A + B}}{2} + \dfrac{{ - A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2} + \dfrac{{A - B}}{2}}} + {e^{\dfrac{{ - A - B}}{2} + \dfrac{{ - A + B}}{2}}}} \right]\]
Taking LCM of terms in power
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^{\dfrac{{A + B + A - B}}{2}}} - {e^{\dfrac{{A + B - A + B}}{2}}} - {e^{\dfrac{{ - A - B + A - B}}{2}}} + {e^{\dfrac{{ - A - B - A + B}}{2}}}} \right]\]
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^{\dfrac{{2A}}{2}}} - {e^{\dfrac{{2B}}{2}}} - {e^{\dfrac{{ - 2B}}{2}}} + {e^{\dfrac{{ - 2A}}{2}}}} \right]\]
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^A} - {e^B} - {e^{ - B}} + {e^{ - A}}} \right]\]
Grouping the terms in the bracket
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})} \right]\]
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{{({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})}}{2}\] … (2)
From equation (1) and equation (2)
\[\dfrac{{({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})}}{2} = \dfrac{{({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})}}{2}\]
We can say LHS = RHS
Hence proved.
Note: Students are likely to make calculation mistakes while calculating the powers in the second step, they are advised to find the two values of hyperbolic functions of sin separately and then multiply.
Also, they should not try to solve the part with negative powers by converting it into reciprocal as it will complicate our solution, we will have to take reciprocal, then take LCM and multiply all the terms with the LCM which is a long process.
* \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\] and \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\]
Complete step-by-step answer:
First we solve Left hand side of the equation i.e. \[\left( {\cosh A - \cosh B} \right)\]
We know \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\]
So, we find the values of \[\cosh A,\cosh B\]
\[ \Rightarrow \cosh A = \dfrac{{{e^A} + {e^{ - A}}}}{2}\]
\[ \Rightarrow \cosh B = \dfrac{{{e^B} + {e^{ - B}}}}{2}\]
Now substituting the values in LHS of the equation we get
\[ \Rightarrow \left( {\cosh A - \cosh B} \right) = \left( {\dfrac{{{e^A} + {e^{ - A}}}}{2}} \right) - \left( {\dfrac{{{e^B} + {e^{ - B}}}}{2}} \right)\]
Now since the denominator is the same we can subtract the terms in the numerator.
\[
\Rightarrow \left( {\cosh A - \cosh B} \right) = \left( {\dfrac{{({e^A} + {e^{ - A}}) - ({e^B} + {e^{ - B}})}}{2}} \right) \\
\Rightarrow \left( {\cosh A - \cosh B} \right) = \left( {\dfrac{{{e^A} + {e^{ - A}} - {e^B} - {e^{ - B}}}}{2}} \right) \\
\]
Group the terms in the numerator.
\[ \Rightarrow \left( {\cosh A - \cosh B} \right) = \left( {\dfrac{{({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})}}{2}} \right)\] … (1)
Now we solve right hand side of the equation i.e. \[\left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right)\]
Since, we know \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\].
So we find the values of \[\sinh (\dfrac{{A + B}}{2}),\sinh (\dfrac{{A - B}}{2})\]
\[
\sinh (\dfrac{{A + B}}{2}) = \dfrac{{{e^{\dfrac{{A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2}}}}}{2} \\
\sinh (\dfrac{{A - B}}{2}) = \dfrac{{{e^{\dfrac{{A - B}}{2}}} - {e^{\dfrac{{ - A + B}}{2}}}}}{2} \\
\]
Substituting the values in RHS of the equation we get
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = 2\left( {\dfrac{{{e^{\dfrac{{A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2}}}}}{2}} \right)\left( {\dfrac{{{e^{\dfrac{{A - B}}{2}}} - {e^{\dfrac{{ - A + B}}{2}}}}}{2}} \right)\]
Cancel out the common factor 2 from both numerator and denominator.
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left( {{e^{\dfrac{{A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2}}}} \right)\left( {{e^{\dfrac{{A - B}}{2}}} - {e^{\dfrac{{ - A + B}}{2}}}} \right)\]
Now we multiply the brackets.
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^{\dfrac{{A + B}}{2}}} \times {e^{\dfrac{{A - B}}{2}}} - {e^{\dfrac{{A + B}}{2}}} \times {e^{\dfrac{{ - A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2}}} \times {e^{\dfrac{{A - B}}{2}}} + {e^{\dfrac{{ - A - B}}{2}}} \times {e^{\dfrac{{ - A + B}}{2}}}} \right]\]
Now using the law of indices, when the base is the same powers can be added. Here the base is same i.e. e, so we can add the powers of each term
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^{\dfrac{{A + B}}{2} + \dfrac{{A - B}}{2}}} - {e^{\dfrac{{A + B}}{2} + \dfrac{{ - A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2} + \dfrac{{A - B}}{2}}} + {e^{\dfrac{{ - A - B}}{2} + \dfrac{{ - A + B}}{2}}}} \right]\]
Taking LCM of terms in power
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^{\dfrac{{A + B + A - B}}{2}}} - {e^{\dfrac{{A + B - A + B}}{2}}} - {e^{\dfrac{{ - A - B + A - B}}{2}}} + {e^{\dfrac{{ - A - B - A + B}}{2}}}} \right]\]
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^{\dfrac{{2A}}{2}}} - {e^{\dfrac{{2B}}{2}}} - {e^{\dfrac{{ - 2B}}{2}}} + {e^{\dfrac{{ - 2A}}{2}}}} \right]\]
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^A} - {e^B} - {e^{ - B}} + {e^{ - A}}} \right]\]
Grouping the terms in the bracket
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})} \right]\]
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{{({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})}}{2}\] … (2)
From equation (1) and equation (2)
\[\dfrac{{({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})}}{2} = \dfrac{{({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})}}{2}\]
We can say LHS = RHS
Hence proved.
Note: Students are likely to make calculation mistakes while calculating the powers in the second step, they are advised to find the two values of hyperbolic functions of sin separately and then multiply.
Also, they should not try to solve the part with negative powers by converting it into reciprocal as it will complicate our solution, we will have to take reciprocal, then take LCM and multiply all the terms with the LCM which is a long process.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE